Abstract: A process for forming a uniform nanoporous dielectric film on a substrate. The process includes horizontally positioning a flat substrate within a cup; depositing a liquid alkoxysilane composition onto the substrate surface; covering the cup such that the substrate is enclosed therein; spinning the covered cup and spreading the alkoxysilane composition evenly on the substrate surface; exposing the alkoxysilane composition to water vapor and base vapor to thereby form a gel; and then curing the gel. The invention also provides an apparatus for spin depositing a liquid coating onto a substrate. The apparatus has a cylindrical cup with an open top section and removable cover which closes the top. A vapor injection port extends through the center of the cover. Suitable means hold a substrate centered within the cup and spin the cup.
Type:
Grant
Filed:
September 19, 2001
Date of Patent:
August 26, 2003
Assignee:
AlliedSignal Inc.
Inventors:
Neil Hendricks, Douglas M. Smith, Teresa Ramos, James Drage
Abstract: Methods and devices for protecting and/or coating medical devices are disclosed. In one embodiment, a method is disclosed that includes surrounding a medical device with a cage, the medical device having a surface. The method further includes attaching the medical device to the cage with at least one securement, suspending the medical device in an air stream, the air stream substantially devoid of suspending particles, and coating at least a portion of said surface of said suspended medical device with a first coating material.
Type:
Grant
Filed:
March 13, 2001
Date of Patent:
August 19, 2003
Assignee:
SciMed Life Systems, Inc.
Inventors:
Marlene Schwarz, Jan Weber, Henrik Hansen, Paul Lubinsky
Abstract: A dual cup spin coating system for capturing a discharged flowable coating material in a spin coating process including a first outer cup and a second outer cup said first outer cup concentrically disposed around the second outer cup forming a first capture space arranged for capturing at least a portion of a discharged flowable coating material discharged from a process substrate at a first positive angle with respect to the process substrate in a spin coating process; and, an inner cup disposed concentrically within the second outer cup forming a second capture space arranged for capturing at least a second portion of the discharged flowable coating material discharged from the process substrate at a second positive angle less than about the first positive angle with respect to the process substrate in a spin coating process.
Abstract: Mounted on a wrist portion (10) of a single coating robot (6) is a common main assembly body (11) to which a plural number of bell-shape heads (42, 81, 83) are replaceably connectible. Further, a head changer (61) is provided within a working area of the coating robot (6), the head changer (61) being provided with head gripping mechanisms (63) to hold a plural number of bell-shape heads (42, 81, 83) thereon. By the use of the coating robot (6), one of the bell-shape heads (42, 81, 83) on the head changer (61) is replaceably connected to the common main assembly body (11) to form a complete sprayer (55, 101). Accordingly, the coating robot (6) can perform various coating operations by selectively picking up a suitable bell-shape head (42, 81, 83) from the head changer (61) and connecting same to the common main assembly body (11).