Patents Examined by Michelle T Leonard
  • Patent number: 11976218
    Abstract: The present application relates to a cathode, a method of manufacturing the same, and a battery including the same. The present application may provide a cathode and a method of manufacturing the same, wherein the cathode comprises an active material layer that contains an acrylic polymer and exhibits excellent resistance to an electrolyte, excellent dispersion of its components and great adhesion to a current collector.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: May 7, 2024
    Assignee: LG Energy Solution, Ltd.
    Inventors: Jeong Ae Yoon, Han Na Chi, Sung Soo Yoon, Su Jee Kwon
  • Patent number: 11955666
    Abstract: A battery system includes an enclosure having opposed first and second major walls, a perimetral wall connecting the first and second major walls along respective perimeters thereof, and an interior defined by the first and second major walls and the perimetral wall, wherein the enclosure is configured for containing an anode assembly, a cathode assembly and an electrolyte within the interior. A longitudinal embossment is formed in the perimetral wall extending outward from the interior and extending along opposed adjacent portions of the first and second perimeters. A wall port is defined in the perimetral wall in fluid communication with the interior, wherein the wall port is configured for permitting flow of the electrolyte therethrough into and out of the interior. First and second electrodes extend through the perimetral wall and are configured for electrical connection with the anode assembly and cathode assembly, respectively.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: April 9, 2024
    Assignee: GM Global Technology Operations LLC
    Inventors: Ruchira Dharmasena, Meinan He, Mei Cai
  • Patent number: 11955616
    Abstract: An electric energy storage system includes: an electric energy storage device; and a control device configured to perform charge and discharge control and temperature adjustment control of the electric energy storage device. The electric energy storage device is configured to be electrically connected to a power network. The control device is configured such that execution of the temperature adjustment control of the electric energy storage device is restricted when the control device performs the charge and discharge control so as to alleviate power shortage on the power network according to a request from a management computer for the power network.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: April 9, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yoshiyuki Tsuchiya
  • Patent number: 11949101
    Abstract: Provided are a lithium composite metal compound having excellent cycle characteristics in the case of being used as battery materials, a positive electrode active material for a lithium secondary battery using the same, a positive electrode using the same, and a lithium secondary battery using the same. The lithium composite metal compound is represented by Composition Formula (I), in which physical property values of pores that are obtained from measurement of nitrogen adsorption and desorption isotherms at a liquid nitrogen temperature satisfy requirements (1) and (2).
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 2, 2024
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, TANAKA CHEMICAL CORPORATION
    Inventors: Masashi Inoue, Yusuke Maeda
  • Patent number: 11949111
    Abstract: In a lithium ion secondary battery (1), a positive electrode (2) and a negative electrode (3) are alternately adjacent to each other via separators (4) and (5). The positive electrode (2) includes a positive electrode current collector composed of a metal porous body, a first positive electrode active material (21) held on one side of the positive electrode current collector, and a second positive electrode active material (22) held on the other side. The negative electrode (3) includes a negative electrode current collector composed of a metal porous body, a first negative electrode active material (31) held on one side of the negative electrode current collector, and a second negative electrode active material (32) held on the other side. The first positive electrode active material (21) faces the first negative electrode active material (31), and the positive electrode active material (22) faces the second negative electrode active material (32).
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: April 2, 2024
    Assignees: HONDA MOTOR CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kiyoshi Tanaami, Akihisa Tanaka, Shintaro Aoyagi, Kazuki Okuno, Akihisa Hosoe, Kikuo Senoo, Hiroshi Takebayashi
  • Patent number: 11942595
    Abstract: Rechargeable batteries include a NiyFe1-y cathode where 0?y?1, an anode comprising a current collector, a porous separator positioned between the cathode and the anode, and an electrolyte comprising MAlX4, wherein M is Na, Li, K, or a combination thereof, and X is Cl, Br, I, or a combination thereof, and wherein the electrolyte is a solid at temperatures less than 50° C. The batteries are temperature activated. The electrolyte temperature is increased above its melting point while charging and reduced below the melting point for energy storage, such as seasonal energy storage. The electrolyte temperature is increased above the melting point again to discharge the battery.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: March 26, 2024
    Assignee: Battelle Memorial Institute
    Inventors: Guosheng Li, Vincent L. Sprenkle, Minyuan M. Li, David M. Reed, Evgueni Polikarpov
  • Patent number: 11876240
    Abstract: A battery-based portable power supply includes a battery pack that is configured to protect the batteries and components therewithin. An outer tube protects inner components from impacts that can be expected in transport and usage. A suspension system within a battery pack of the power supply protects the batteries from jolts and bumps. The batteries can be removed and replaced. A switch structure for actuating the electrical outlet is disposed within the battery pack. The switch structure is actuated by compressing the battery pack from outside.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: January 16, 2024
    Inventor: Sean Anderson
  • Patent number: 11862799
    Abstract: An anode active material for a secondary battery that has improved cycle swelling properties and rapid charge performance, an anode comprising same, and a method for manufacturing same. The anode active material is a mixture of artificial graphite and spherical natural graphite, wherein the spherical natural graphite has an average particle diameter (D 50) of 12 ?m or less, with D 90-D 10 value ranging from 5 ?m to 12 ?m.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: January 2, 2024
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Hee Won Choi, Je Young Kim, Sang Wook Woo, Li Lin Piao
  • Patent number: 11764412
    Abstract: This application relates to a battery pack including a battery cell, a circuit board configured to collect state information about the battery cell, and a connection line configured to transmit the state information about the battery cell to the circuit board and including a link line and a board connection pad. The link line extends from a side of the battery cell toward the circuit board, and the board connection pad extends from a first end portion, to which the link line is connected, and is coupled to the circuit board while facing the circuit board. The board connection pad includes outer soldering portions formed in an outer region of the board connection pad and concave toward the outside of the board connection pad and a gas discharge hole formed in a closed loop shape in an inner region of the board connection pad.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: September 19, 2023
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Soodeok Moon, Younghwan Kwon, Chuljung Yun, Kyungho Cho