Patents Examined by Mike Stahl
  • Patent number: 9885837
    Abstract: An optical device is equipped with an input/output module having at least one optical fiber, a movable mirror which deflects, toward the input/output module, light that is received from the input/output module, and a lens which couples the input/output module and the deflection unit to each other optically and has a focal length that is greater than or equal to 2.0 mm and shorter than 3.5 mm. A dispersion index ? of the optical device that is given by an equation: ?={n(1.45)?1}/{n(1.2)?n(1.7)} where n(1.45), n(1.2), and n(1.7) are refractive indices of a glass material of the lens at wavelengths 1.45 ?m, 1.2 ?m, and 1.7 ?m, respectively, is larger than or equal to 100. The wavelength dependence of an optical characteristic of this optical device is weaker than that of conventional optical devices.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: February 6, 2018
    Assignee: Sumitomo Electric Industries Ltd.
    Inventors: Hidehisa Tazawa, Kenichiro Takahashi
  • Patent number: 9880368
    Abstract: Embodiments of the invention include a method for making a partially bonded optical fiber ribbon. The method includes providing a linear array of optical fibers, and applying with an ink jet printing machine a bonding matrix material to at least a portion of at least two adjacent optical fibers. The applied bonding matrix material has a viscosity of approximately 2.0 to approximately 10.0 centipoise (cP) measured at 25 degrees Celsius (° C.). The applied bonding matrix material also has a conductivity of approximately 600 to approximately 1200 millimhos (mmhos). The applied bonding matrix material also has an adhesion of approximately 0.01 to approximately 0.20 Newtons (N). Also, the bonding matrix material is applied to at least a portion of at least two adjacent optical fibers in such a way that the linear array of optical fibers forms a partially bonded optical fiber ribbon.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: January 30, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Harold P Debban, Timothy Goddard, Heng Ly, Peter A. Weimann
  • Patent number: 9880404
    Abstract: An optical waveguide device includes a substrate; a lower cladding disposed on the substrate; a rib waveguide including a slab disposed on the lower cladding and a single rib disposed on the slab contiguous to the slab; and an upper cladding disposed on the rib waveguide. The rib waveguide includes a first doped region having a first electric conductivity exhibiting a P-type electric conductivity across the rib and the slab and a second doped region being contiguous to the first doped region and having a second electric conductivity exhibiting an N-type electric conductivity across the rib and the slab.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: January 30, 2018
    Assignees: FUJIKURA LTD., AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Kensuke Ogawa, Kazuhiro Goi, Guo-Qiang Lo, Tsung-Yang Jason Liow, Xiaoguang Tu
  • Patent number: 9874800
    Abstract: The present invention includes a Mach-Zehnder modulator (MZM) linear driver configured in a differential form with two waveguides carrying two traveling waves which supports a two-channel spectral combiner integrated with a wavelength locker. By coupling a DC current source supplied with a modulation voltage with each segment thereof for providing electrical modulation signal overlapping with each of the two traveling waves. The modulated traveling waves in the two waveguides then are combined in one output signal by a multimode interference coupler. Two optical signals at ITU grid channels are separately modulated by two MZMs and combined into a silicon waveguide-based delayed-line interferometer built on a SOI substrate to produce an output signal having a free spectral range equal to twice of the spacing of the two ITU grid channels. Two dither signals can be added respectively to the two optical signals for identifying and locking corresponding two channel wavelengths.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: January 23, 2018
    Assignee: INPHI CORPORATION
    Inventor: Radhakrishnan L. Nagarajan
  • Patent number: 9874686
    Abstract: An optical fiber comprising: (i) a core comprising silica and having a maximum relative refractive index delta ?1MAX; and LP01 effective area >100 ?m2 at 1550 nm; (ii) an inner cladding surrounding the core and having a minimum relative refractive index delta ?2MIN and ?coreMAX>?2MIN; (iii) an outer cladding surrounding the inner cladding and comprising a first outer cladding portion with a maximum refractive index ?3A such that ?3A>?2MIN; and another outer cladding portion surrounding the first outer cladding portion with a maximum refractive index delta ?3B wherein with a maximum refractive index delta ?3B wherein ?3B>?3A, said another portion being the outermost portion of the outer cladding; and (iv) a coating layer surrounding the outer cladding, and in contact with said another outer cladding portion, the coating layer having a relative refractive index delta ?C wherein ?C>?3B.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: January 23, 2018
    Assignee: Corning Incorporated
    Inventors: Snigdharaj Kumar Mishra, Michal Mlejnek, James Andrew West, William Allen Wood, Aramais Robert Zakharian
  • Patent number: 9864215
    Abstract: Provided is a substrate-type optical waveguide, having a phase modulation function, (i) in which a reflection of a signal to be inputted via a coplanar line is restrained and (ii) which consumes less power. In a case where the substrate-type optical waveguide is partitioned into a plurality of sections by cross sections orthogonal to a direction in which light propagates through a core, a local capacitance in each of the plurality of sections gradually increases as a distance from an entrance end surface increases.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: January 9, 2018
    Assignee: FUJIKURA LTD.
    Inventors: Shinichi Sakamoto, Kazuhiro Goi, Norihiro Ishikura
  • Patent number: 9864141
    Abstract: A compact polarization beam rotator includes a converter waveguide comprising a first segment and a second segment both in corresponding taper rib shapes sharing a first middle plane and configured to receive an input optical signal with TM polarization mode from an input plane and convert the TM polarization mode to TE1 polarization mode comprising a first arm mode and a second arm mode at a second middle plane. The polarization beam rotator additionally includes a splitter waveguide coupled to the second middle plane for separating the first arm mode and the second arm mode at a third plane respectively coupled to a first branch waveguide to deliver the first arm mode in phase and a second branch waveguide to reverse the second arm mode phase by 180°, and a 2×1 MMI coupler waveguide to combine both arm modes in phase to an output optical signal with TE polarization mode.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: January 9, 2018
    Assignee: INPHI CORPORATION
    Inventor: Jie Lin
  • Patent number: 9857548
    Abstract: A cable assembly includes a distribution cable, a tether cable, and a network access point (NAP) assembly having a cavity defined therein. The distribution cable includes optical fibers and the tether cable includes an optical fiber. The optical fiber of the tether cable is tightly constrained within the tether cable and portion thereof extends from the tether cable into the cavity of the NAP assembly and is spliced to a portion of one of the optical fibers of the distribution cable extending into the cavity of the NAP assembly from a side of the distribution cable. The splice is positioned in the cavity. Tight constraint of the optical fiber of the tether cable within the tether cable limits transmission of fiber movement to the portion of the optical fiber of the tether cable extending into the cavity of the NAP assembly, thereby protecting the splice.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: January 2, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Lars Kristian Nielsen, Humberto Perez Toledo, Ricardo Andre Rivas Alas
  • Patent number: 9857540
    Abstract: A strain relief boot and a fiber optic cable assembly are described. The strain relief boot has a first conduit made of at least a first material. The first conduit has a front segment and a rear segment. The rear segment includes at least one discontinuity to make the rear segment more flexible than the front segment. The rear segment also includes at least one projection extending outwardly from the rear segment at a location adjacent to the at least one discontinuity. The strain relief boot also has a second conduit made from at least a second material that is less rigid than the first material. The second conduit at least partially surrounds at least the rear segment of the first conduit and extends rearwardly of the first conduit.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: January 2, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Izhar Zahoor Ahmed, Brandon Andrew Barnes, Ashley Wesley Jones, Nikhil Baburam Vasudeo
  • Patent number: 9846280
    Abstract: A two-dimensional (2D) optical fiber array component takes the form of a (relatively inexpensive) fiber guide block that is mated with a precision output element. The guide block and output element are both formed to include a 2D array of through-holes that exhibit a predetermined pitch. The holes formed in the guide block are relatively larger than those in precision output element. A loading tool is used to hold a 1×N array of fibers in a fixed position that exhibits the desired pitch. The loaded tool (holding the pre-aligned 1×N array of fibers) is then inserted through the aligned combination of the guide block and output element, and the fiber array is bonded to the guide block. The tool is then removed, re-loaded, and the process continued until all of the 1×N fiber arrays are in place. By virtue of using a precision tool to load the fibers, the guide block does not have to be formed to exhibit precise through-hole dimensions, allowing for a relatively inexpensive guide block to be used.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: December 19, 2017
    Assignee: II-VI Incorporated
    Inventors: Mark Filipowicz, Mark H. Garrett
  • Patent number: 9841558
    Abstract: The present invention provides a two-layer structure colored optical fiber which includes a colored secondary coating layer improved in collectability and separability. The two-layer structure colored optical fiber in an embodiment of the present invention includes a glass optical fiber, a primary coating layer coating the glass optical fiber, and a colored secondary coating layer coating the primary coating layer. The secondary coating layer has such characteristics that a surface cure percentage is 99% or more at an infrared absorption peak of a wave number of 1407 cm?1 and a surface kinetic friction force in Knot Test is less than 0.075 N.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: December 12, 2017
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroki Tanaka, Minoru Kasahara, Junpei Watanabe, Kenichi Suyama, Yoshihiro Arashitani
  • Patent number: 9835812
    Abstract: A multi-fiber aggregate is provided. The multi-fiber aggregate includes at least two optical fibers, each of the at least two optical fibers having a core member formed from a silica-based glass and an outer cladding layer formed from a silica-based glass surrounding and in direct contact with the core member. The multi-fiber aggregate also includes a polymeric binding coating surrounding the at least two optical fibers and holding the at least two fibers in a predetermined geometry.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: December 5, 2017
    Assignee: Corning Incorporated
    Inventor: Michael John Yadlowsky
  • Patent number: 9835795
    Abstract: The invention relates to a microstructured optical fiber for generating supercontinuum light. The optical fiber comprises a core and a cladding region surrounding the core. The optical fiber comprises a first fiber length section, a second fiber length section as well as an intermediate fiber length section between said first and second fiber length sections. The first fiber length section has a core with a first characteristic core diameter larger than about 7 ?m. The second fiber length section has a core with a second characteristic core diameter, smaller than said first characteristic core diameter. The intermediate length section of the optical fiber comprises a core which is tapered from said first characteristic core diameter to said second characteristic core diameter over a tapered length. The invention also relates to a supercontinuum light source comprising an optical fiber according to the invention and a pump light source.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: December 5, 2017
    Assignee: NKT PHOTONICS A/S
    Inventors: Carsten L. Thomsen, Thomas T. Alkeskjold, Erik B. Thomsen
  • Patent number: 9817249
    Abstract: Disclosed herein is a traveling-wave Mach-Zehnder modulator and method of operating same that advantageously exhibits a reduced optical insertion loss as compared with contemporary Mach-Zehnder structures. Such advantage comes at the modest expense of increased modulator length and increased RF loss.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: November 14, 2017
    Assignee: Acacia Communications, Inc.
    Inventor: Christopher Doerr
  • Patent number: 9810556
    Abstract: There is described a sensor apparatus. It comprises an interrogator comprising a light source emitting pulses having a wavelength about an average wavelength; and a fiber Bragg grating (FBG) arrangement. The arrangement comprises a FBG sensor array comprising a plurality of FBG sensors on an optical fiber and being for reflecting the pulses, thereby producing reflected pulses at each one of the FBG sensors. FBG sensors of a given FBG sensor array have a spatial separation therebetween which is sufficient to allow, at a receiver, a temporal discrimination between the reflected pulses produced by each one of the FBG sensors. The FBG sensor array has a spectral reflection window which comprises the average wavelength.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: November 7, 2017
    Inventor: François Ouellette
  • Patent number: 9804344
    Abstract: An optical fiber with a connector includes a first connector and a plurality of optical fibers attached to the first connector. The first connector includes: at least one fiber-shaped member; and a ferrule including a first end surface and a second end surface arranged in a first direction, and a holding portion holding the optical fibers and the fiber-shaped member. In the holding portion, a plurality of fiber insertion holes extending from the first end surface in the first direction is formed such that the optical fibers and the fiber-shaped member are insertable thereinto. One end of the optical fiber and one end of the fiber-shaped member are held by the holding portion in a state of being inserted into the fiber insertion hole. The optical fiber extends to the outside of the ferrule. The other end of the fiber-shaped member is located inside the ferrule.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: October 31, 2017
    Assignee: SEI Optifrontier Co., Ltd.
    Inventors: Kenichiro Ohtsuka, Kotaro Ueda, Tsutomu Kamada, Junji Fukui, Masashi Oka
  • Patent number: 9798084
    Abstract: This disclosure provides systems, methods, and apparatus for a photonic chip. The photonic chip includes one or more electronic components in addition to one or more optical components. An optical coupler can be utilized for coupling external optical fibers or sources with the optical components. The optical coupler can include a beam splitter for splitting an incident light having both trans-electric (TE) and trans-magnetic (TM) polarizations into two beams having only TE and TM polarizations. The light beam with TM polarization is incident on a grating coupler on the chip having a horn section, which includes gratings. The light beam is reflected onto the grating coupler such that the direction of TM polarization is within the first plane of incidence, and the first beam of light is incident on the first plurality of gratings at an angle with respect to a normal to the plane of the first grating coupler.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 24, 2017
    Assignee: Google Inc.
    Inventors: Lieven Verslegers, Ryohei Urata
  • Patent number: 9791633
    Abstract: An optical path system includes a first block that further includes multiple first fiber optic guides, arranged in a first configuration to receive multiple first optical fibers, with one fiber in each guide. The optical path system further includes a second block comprising multiple second fiber optic guides, arranged in a second configuration to receive multiple second optical fibers, with one fiber in each guide, wherein a first face of the second block abuts a first face of the first block and wherein the first block is movable relative to the second block. The optical path system also includes micro-position adjusting mechanisms configured to move the first block relative to the second block to align the multiple first optical fibers with the multiple second optical fibers.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: October 17, 2017
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 9791652
    Abstract: An optical communication cable subassembly includes a cable core having optical fibers each comprising a core surrounded by a cladding, buffer tubes surrounding subsets of the optical fibers, and a binder film surrounding the buffer tubes. Armor surrounds the cable core, the binder film is bonded to an interior of the armor, and water-absorbing powder particles are provided on an interior surface of the binder film.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: October 17, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Mario Sergio Sandate Aguilar, Michael John Gimblet, Julian Latelle Greenwood, III, Warren Welborn McAlpine
  • Patent number: 9791647
    Abstract: An optoelectronic module is disclosed. The optoelectronic module comprises an optical connector, a contact, an opto-electric assembly, and a casing. The opto-electric assembly has a carrier optically connected to the optical connector by a flexible optical fiber and electrically connected to the contact by a flexible cable. The casing at least partially encloses the opto-electric assembly, the optical connector, and the contact. An inner surface of a wall of the casing is attached to the carrier in a thermally conductive manner.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: October 17, 2017
    Assignee: Tyco Electronics Svenska Holdings AB
    Inventors: Odd Robert Steijer, Magnus Andersson