Patents Examined by Milton I Cano
  • Patent number: 10193116
    Abstract: The present invention relates generally to electrochemical energy storage devices such as Li-ion batteries, and more particularly to a method of providing uniform ceramic coatings with controlled thicknesses for separators in such storage devices. Some embodiments of the invention utilize a layer by layer coating of nano/micro-sized particles dispersed in a solvent, which can be aqueous or non-aqueous. Other embodiments of the invention utilize a dry process such as PVD for depositing a ceramic film on a porous polyolefin separator. According to certain aspects of the invention, advantages of this approach include the ability to achieve a denser more uniform film with better controlled thickness with less waste and higher yield than current ceramic coating technology. An advantage of a ceramic coated separator is increased safety of cells.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: January 29, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Subramanya P. Herle, Joseph G. Gordon
  • Patent number: 10186704
    Abstract: A battery pack includes a plurality of electrode assemblies, a lower housing including a plurality of receiving parts that receive the plurality of electrode assemblies, an upper cap coupled to a top portion of the lower housing, the upper cap sealing the plurality of receiving parts, and an upper housing combined with the lower housing.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: January 22, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Wonkyu Bang
  • Patent number: 10164276
    Abstract: A fuel cell device is improved for operating conditions during a partial load operation. The fuel cell device comprises a cell stack formed by electrically connecting fuel cells for generating power by fuel gas and oxygen-containing gas; a fuel gas supply unit for supplying the fuel gas to the fuel cells; and a power adjustment unit for adjusting the amount of current that is supplied to an external load and a controller for controlling the fuel gas supply unit and the power adjustment unit. The controller adjusts, during the partial load operation of the fuel cell device and when the fuel gas supplied to the cell stack is at low flow rate. The a relationship between a fuel utilization rate of the cell stack and the amount of power generated by the cell stack can be nonlinear.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: December 25, 2018
    Assignee: KYOCERA CORPORATION
    Inventors: Ono Takashi, Mitsuhiro Nakamura, Naruto Takahashi
  • Patent number: 10164271
    Abstract: A polymer electrolyte fuel cell according to the present invention includes: a unit cell including a membrane-electrode assembly and a pair of separators; a manifold; a gas introducing member; and a first member. A recess is formed at a gas lead-out port side of the gas introducing member so as to be connected to the gas lead-out port. The first member is provided such that a communication portion thereof communicates with the manifold. The gas introducing member is provided such that: the recess communicates with the communication portion; and when viewed from a thickness direction of the polymer electrolyte membrane, the gas lead-out port and a main surface of the first member overlap each other.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: December 25, 2018
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Tomohiro Kuroha, Shinsuke Takeguchi, Satoshi Otani, Yasushi Sugawara, Mitsuo Yoshimura
  • Patent number: 10153483
    Abstract: Compositions, and methods of obtaining them, useful for lithium ion batteries comprising discrete oxidized carbon nanotubes having attached to their surface lithium ion active materials in the form of nanometer sized crystals or layers. The composition can further comprise graphene or oxygenated graphene.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 11, 2018
    Assignee: Molecular Rebar Design, LLC
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Patent number: 10147927
    Abstract: A secondary battery including: an electrode assembly; a case accommodating the electrode assembly; a cap assembly including a cap plate coupled to the case, and a bottom plate attached to a bottom surface of the cap plate; and an electrode terminal protruding from the cap assembly and electrically connected to the electrode assembly, and the bottom plate includes a terminal plate electrically connected to the electrode terminal, and an insulation film stacked on the terminal plate and electrically insulating the terminal plate and the cap plate from each other, the insulation film being integrally formed with the terminal plate.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 4, 2018
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jaeil Seong, Hideaki Yoshio, Jiwon Yun
  • Patent number: 10141592
    Abstract: A resin-framed membrane electrode assembly for a fuel cell includes a stepped membrane electrode assembly and a resin frame member. The stepped membrane electrode assembly includes a solid polymer electrolyte membrane, an anode electrode, and a cathode electrode. The resin frame member surrounds an outer periphery of the solid polymer electrolyte membrane and includes an inner protruding portion that protrudes from an inner peripheral base portion toward the cathode electrode and that has a thickness. The inner protruding portion has an adhesive application portion to which an adhesive is applied so as to surround a part of the inner protruding portion. The part is in contact with the stepped membrane electrode assembly. A thickness of a cathode diffusion layer is larger than a thickness of an anode diffusion layer.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: November 27, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Seiji Sugiura, Yoshihito Kimura, Naoki Mitsuta, Masashi Sugishita, Kenichi Tanaka, Yukihito Tanaka
  • Patent number: 10128507
    Abstract: A lithium secondary battery including: a positive electrode, a negative electrode, and a sulfide solid electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material particle and a coating film including an oxide including lithium (Li) and zirconium (Zr) on a surface of the positive active material particle.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: November 13, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seitaro Ito, Satoshi Fujiki, Takanobu Yamada, Yuichi Aihara
  • Patent number: 10128509
    Abstract: An electrochemical cell system is configured to utilize an ionically conductive medium flowing through a plurality of electrochemical cells. One or more gas vents are provided along a flow path for the ionically conductive medium, so as to permit gasses that evolve in the ionically conductive medium during charging or discharging to vent outside the cell system, while constraining the ionically conductive medium within the flow path of the electrochemical cell system.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: November 13, 2018
    Assignee: NANTENERGY, INC.
    Inventors: Cody A. Friesen, Ramkumar Krishnan, Grant Friesen, Todd Trimble, Michael Mihalka, Andrew Goodfellow
  • Patent number: 10116005
    Abstract: An energy storage device includes: a core; and a wound body including, layered and wound around the core: a positive electrode, a negative electrode, and two separators, one of which is interposed between the positive electrode and the negative electrode and each having a first surface and a second surface. The first surface has thermal bonding properties superior to thermal bonding properties of the second surface, and at least one of the two separators is bonded to the core via the first surface thereof.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 30, 2018
    Assignee: GS YUASA INTERNATIONAL, LTD.
    Inventors: Akihiko Miyazaki, Sumio Mori, Tomonori Kako
  • Patent number: 10115958
    Abstract: A manufacturing method of an electric storage device includes: a current collector assembly step of disposing a current collector between an electrolyte solution pouring opening and a power generating element so as to block a view of the power generating element from the electrolyte solution pouring opening; an electrolyte solution pouring step of pouring an electrolyte solution through the electrolyte solution pouring opening; and a sealing step of disposing a sealing member at the electrolyte solution pouring opening and sealing the electrolyte solution pouring opening by welding.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: October 30, 2018
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventors: Masakazu Tsutsumi, Motoki Hoshino, Jun Nakamura, Shinsuke Yoshitake, Takeshi Sasaki
  • Patent number: 10103405
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 16, 2018
    Assignee: QuantumScape Corporation
    Inventors: Dong Hee Anna Choi, Niall Donnelly, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Mohit Singh, Adrian Winoto
  • Patent number: 10079373
    Abstract: A pouch type secondary battery and a method of manufacturing the same are disclosed. The pouch type secondary battery includes a pouch type case formed by attaching an upper sheet and a lower sheet, and an electrode assembly received in the pouch type case. A polymer coating layer for improving sealability is further included at an outer side portion of the pouch type case, in which the upper sheet and the lower sheet are attached.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: September 18, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Jeoung Hwan Kim, Shin Hwa Lee, Woo Yong Lee, Min Su Kim, Hyang Mok Lee
  • Patent number: 10074869
    Abstract: A fuel cell includes a membrane electrode assembly and a first separator. The first separator includes a first reactant gas channel, a first reactant gas manifold, and a first buffer portion. The first buffer portion is located outside of a power generation region of an electrode catalyst layer of the first electrode. The first buffer portion connects the first reactant gas channel to the first reactant gas manifold. A gas diffusion layer of the first electrode extends along a surface of the first separator to a first buffer region facing the first buffer portion. An intermediate layer of the first electrode covers a portion of the gas diffusion layer of the first electrode in the first buffer region.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: September 11, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Masaaki Sakano, Nagayuki Kanaoka
  • Patent number: 10056619
    Abstract: A membrane electrode assembly with protective film includes a MEA and protective films. The MEA includes a cathode, an anode, and a solid polymer electrolyte membrane interposed between the cathode and the anode. The protective films are joined on the outer end of the solid polymer electrolyte membrane. The membrane electrode assembly has a power generation area and an edge-vicinity area. Recesses for receiving the edge-vicinity area including outer ends of the cathode and the anode are formed in outer portions of a cathode-side separator and an anode-side separator which contact the MEA.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: August 21, 2018
    Assignee: Honda Motor Co., Ltd.
    Inventors: Seiji Sugiura, Hiroshi Shinkai, Kenichi Tanaka, Mihoko Kawaharada, Kenta Urata, Yukihito Tanaka, Takashi Kato
  • Patent number: 10044055
    Abstract: A fuel cell comprises an anode having an inner face and an outer face fluidly communicable with a fuel; a cathode having an inner face ionically communicable with and physically separated from the anode inner face, and having an outer face fluidly communicable with an oxidant; and at least one movable guard movable over at least one of the anode outer face, cathode outer face, anode inner face, and cathode inner face. The guard has a structure sufficient to block at least part of one or more of the anode's communication with the fuel, the cathode's communication with the oxidant, and the ionic communication between the anode and cathode thereby reducing a maximum potential active area of the fuel cell to an effective active area of the fuel cell.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: August 7, 2018
    Assignees: THE UNIVERSITY OF BRITISH COLUMBIA, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: David P. Wilkinson, Alfred Lam
  • Patent number: 10026994
    Abstract: Disclosed herein is an electrode assembly including two or more electrode plates, each of which has electrode tabs, and a separator plate disposed between the electrode plates and/or a one-unit separation sheet disposed between the electrode plates to cover side surfaces of the electrode plates, which constitute an electrode tab non-formation region, wherein the electrode plates are stacked in a height direction on the basis of a plane such that the electrode plates having opposite polarities face each other in a state in which the separator plate and/or the separation sheet is disposed between the electrode plates, a stack constituted by the electrode plates includes electrode plates having different sizes, and an absolute value of the difference in thickness between the electrode plates having different sizes facing each other is 0 to 79 ?m.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: July 17, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Sungjin Kwon, Dong-Myung Kim, Ki-Woong Kim, Soon-Ho Ahn
  • Patent number: 9991529
    Abstract: A fuel cell system operates under at least one of the conditions of no humidity or high temperature, and an operating method thereof, are characterized in that a fuel cell has a fuel gas flow path and an oxidant gas flow path arranged such that fuel gas and oxidant gas flow in opposite directions, a determining apparatus that determines the amount of water near the oxidant gas flow path inlet, and a fuel gas control apparatus which increases the amount of water near the oxidant gas flow path inlet by increasing the fuel gas flowrate and/or reducing the fuel gas pressure if it is determined in the determining apparatus that the amount of water near the oxidant gas flow path inlet is insufficient.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: June 5, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeki Hasegawa, Masaki Ando, Kenichi Hamada
  • Patent number: 9985273
    Abstract: A preparation method of a three-dimensional nanosized porous metal oxide electrode material of lithium ion battery, which soaks a dried polymer colloidal crystal microsphere template in a metal salt solution as a precursor solution for a period of time, and obtains a precursor template complex after filtration and drying; heats the precursor template complex to a certain temperature at a low heating rate and keeps the temperature, and then obtains the three-dimensional nanosized porous metal oxide electrode material of lithium ion battery after cooling to room temperature. A metal oxide electrode material is manufactured, with the three-dimensional nanosized porous metal oxide electrode material thereby improving the ionic conductivity of the negative electrode material of lithium ion battery, and shortens the diffusion path of the lithium ions during an electrochemical reaction process, and improves the rate discharge performance of lithium ion battery greatly.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: May 29, 2018
    Assignee: SHANGHAI ZHONGKE SHENJIANG ELECTRIC VEHICLE CO., LTD
    Inventors: Jiangming Sun, Tiepeng Zhao, Zhigang Xu, Yanbing Wang, Gang Wang, Ming Zhang, Shirong Xie
  • Patent number: 9981541
    Abstract: A battery module is mounted in the rear of a vehicle body and attached to at least one rear side frame extending rearward in the vehicle body such that the rear side module protrudes rearward beyond the battery module. One or a plurality of slope members is provided at the rear of the battery module. Each of the slope members forms a frontward rising inclined surface that protrudes above the rear side frame at the rear of the battery module.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: May 29, 2018
    Assignee: SUBARU CORPORATION
    Inventors: Yu Onodera, Junya Okamura, Takayuki Tokunaga, Yasunori Mashio