Patents Examined by Monique M. Wills
  • Patent number: 10847775
    Abstract: An embodiment is directed to a multi-layer contact plate configured to establish electrical bonds to battery cells in a battery module. The multi-layer contact plate includes two or more primary conductive layers (e.g., Al, Cu, etc.), and a cell terminal connection layer (e.g., steel, Al, Cu, etc.) that is joined with, and sandwiched by, the two or more primary conductive layers. A portion of the cell terminal connection layer is configured to form a set of bonding connectors (e.g., bonding ribbons) to provide a direct electrical bond between the multi-layer contact plate and terminals (e.g., positive terminals, negative terminals, or a combination thereof) of at least one group of battery cells (e.g., a single group of battery cells, two groups of battery cells that are connected in series, etc.).
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: November 24, 2020
    Assignee: TIVENI MERGECO, INC.
    Inventors: Heiner Fees, Andreas Track, Alexander Eichhorn, Ralf Maisch, Jörg Damaske, Martin Eberhard
  • Patent number: 10840513
    Abstract: A solid electrolyte for a negative electrode of a secondary battery includes a first porous solid electrolyte having a first surface; a first coating on the first surface of the first porous solid electrolyte; an adhesive electrolyte layer on the first porous solid electrolyte; and a second porous solid electrolyte on the adhesive electrolyte layer, the second porous solid electrolyte having a second surface; wherein the first porous solid electrolyte and the second porous solid electrolyte each have an ionic conductivity effective for a deposition metal; and wherein a surface of the first coating is less favorable for deposition of the deposition metal than the second surface of the second solid electrolyte. An electrode assembly and an electrochemical cell including the solid electrolyte and method for the manufacture thereof are also described.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: November 17, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Karen E. Thomas-Alyea, Robert Ashcraft, Lincoln Miara
  • Patent number: 10840507
    Abstract: A composite positive electrode active material for an all-solid-state secondary battery containing particles of a positive electrode active material and a sulfide-based solid electrolyte layer coating surfaces of the particles, wherein the composite positive electrode active material has an average roundness that is 1.3 times or more of that of a positive electrode active material at an inner core of the composite positive electrode active material.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: November 17, 2020
    Assignee: OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION
    Inventors: Satoru Watano, Hideya Nakamura
  • Patent number: 10833333
    Abstract: Novel mixed-conducting perovskite oxides, including La0.3Ca0.7Fe0.7Cr0.3O3-?, useful as oxygen and fuel electrodes for solid oxide fuel cells (SOFCs) and reversible solid oxide fuel cells (RSOFCs) applications. Electrode materials produce by microwave-assisted processes show improved properties as electroactive materials. SOFC and RSOFC are successfully prepared using microwave-assisted techniques.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: November 10, 2020
    Assignee: SeeO2 Energy Inc.
    Inventors: Viola Birss, Beatriz Molero Sanchez, Paul Kwesi Addo, Min Chen
  • Patent number: 10833436
    Abstract: An electrical connector carries large amounts of electrical current between two circuit boards with low resistance and low self-inductance by means of an interdigitated anode and cathode, thereby providing low dynamic voltage loss. The connector also may include, near where power will be consumed, an interposer board with on-board capacitance to provide even lower dynamic voltage loss. The connector has application to delivering low-voltage, high-current power from a power supply on a first board to electronics on a second board: the low resistance provides low voltage drop for a load current that is constant, while the low inductance and the capacitors provide low voltage fluctuation for a load current that changes. These issues are of great importance, for example, in designing high-performance computers.
    Type: Grant
    Filed: December 24, 2017
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Paul W. Coteus, Andrew Ferencz, Shawn A. Hall, Todd E. Takken
  • Patent number: 10833358
    Abstract: To provide a non-aqueous electrolyte electricity-storage element including a positive electrode including a positive-electrode active material capable of inserting and releasing anions, a negative electrode including a negative-electrode active material capable of inserting and releasing cations, and a non-aqueous electrolyte, wherein the positive-electrode active material is porous carbon having pores having a three-dimensional network structure, and wherein a changing rate of a cross-sectional thickness of a positive electrode film including the positive-electrode active material defined by Formula (1) below is less than 45%.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 10, 2020
    Assignee: Ricoh Company, Ltd.
    Inventors: Naoto Abe, Yoshio Itoh, Tatsuya Dan, Yuka Araki, Shuhei Takeshita
  • Patent number: 10826033
    Abstract: The present disclosure provides a shell, a battery module and a battery pack. The shell according to the present disclosure comprises: an enclosing frame which has two side walls, a top wall, a bottom wall and a receiving cavity; two end plates which respectively securely connect with the two ends of the enclosing frame. And each side wall is formed with a fixing rib protruding outwardly along a width direction, the fixing rib is provided with at least one through hole. A battery module comprises the above-mentioned shell. A battery pack according to the present disclosure comprises: a lower casing; the plurality of above-mentioned battery modules received in the lower casing; and a plurality of fasteners, each fastener passes through the corresponding through hole of the battery module to secure the battery module in the lower casing.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 3, 2020
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Hua Zhang, Feng Qin, Lin Ma, Zhiyi You
  • Patent number: 10818924
    Abstract: The present disclosure provides a positive electrode plate, a preparation method thereof and a sodium-ion battery. The positive electrode plate comprises a positive electrode current collector and a positive electrode active material film. The positive electrode active material film provided on the positive electrode current collector and comprises a positive electrode active material. The positive electrode active material comprises a prussian blue analogue material, a molecular formula of the prussian blue analogue material is AxM[M?(CN)6]y, a water content of the positive electrode active material film is 100 ?g/g˜5000 ?g/g. The water content of the positive electrode active material film is controlled within a certain range, which can not only ensure the sodium-ion battery do not seriously swell during charge-discharge process, but also can ensure sodium-ion battery have excellent charge-discharge performance and cycle performance.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: October 27, 2020
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Ying Wang, Yongsheng Guo, Chengdu Liang, Xiqing Wang, Shuojian Su, Qian Liu
  • Patent number: 10818976
    Abstract: A lithium rechargeable lithium battery including a conductive substrate, a cathode material layer disposed over the conductive substrate, a solid electrolyte material layer disposed over the cathode material layer, an anode material layer disposed over the solid electrolyte material layer, and a conductive layer disposed over the anode material layer.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: October 27, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin W. Brew, Oki Gunawan, Singh Saurabh, Teodor K. Todorov
  • Patent number: 10818914
    Abstract: A carbonized mushroom tissue electrode material and methods are shown. In one example, carbonized mushroom tissue is used as an electrode in a battery, such as a lithium ion battery. A battery, comprising: a first electrode, including: carbonized tissue from a mushroom; a second electrode; and an electrolyte in contact with both the first electrode and the second electrode.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: October 27, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Brennan Campbell, Robert Ionescu, Cengiz S Ozkan, Mihrimah Ozkan
  • Patent number: 10818987
    Abstract: A battery cell is made more thermally efficient with the addition of an integrated vapor chamber that extends out from the cell and into an external heat exchange interface. The integrated vapor chamber can contain a working fluid which undergoes phase changes between liquid and vapor phases when there is a temperature differential between the interior and exterior of the cell. The integrated vapor chamber can include a wicking material to transfer the working fluid to the exterior wall of the vapor chamber. The integrated vapor chamber allows for both heating and cooling of the battery cell.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: October 27, 2020
    Assignee: Romeo Systems Technology, LLC
    Inventors: W. Porter Harris, William Hunter Greene, Qian Wang, Wesley Thibault, Berton Vite
  • Patent number: 10807877
    Abstract: A compound represented by the general formula Li1+xAlxTi2?x(PS4)3, wherein 0.1?x?0.75. The above compound has been found to have high ionic conductivity. Also, the use of the compound as a solid electrolyte, in particular in an all solid-state lithium battery.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: October 20, 2020
    Assignee: TOYOTA MOTOR EUROPE
    Inventor: Yuki Katoh
  • Patent number: 10807878
    Abstract: Provided is a complex oxide that has a space group I-43d, has a high hydrogen content, contains almost no impurity phase, exhibits almost no aluminum substitution in the structure thereof, and is suitable for proton conductivity. This complex oxide is represented by a chemical formula Li7-x-yHxLa3Zr2-yMyO12 (M represents Ta and/or Nb, 3.2<x?7?y, and 0.25<y<2) and is a single phase of a garnet type structure belonging to a cubic system, and the crystal structure thereof is a space group I-43d.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 20, 2020
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Junji Akimoto, Naoki Hamao, Kunimitsu Kataoka
  • Patent number: 10804580
    Abstract: The present disclosure discloses a cell assembly including: a plurality of cells arranged at predetermined intervals; and a cushion pad disposed between the cells to be in surface contact with the cells and configured to absorb volumetric expansion of the cells, wherein the cushion pad has a thermal conductivity of 1.5 W/mK or higher.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: October 13, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Soo-Youl Kim, Sei-Woon Oh
  • Patent number: 10797275
    Abstract: An energy storage device includes: a conductive member (shaft portion) which penetrates a case and is connected to a terminal main body (bus bar connecting portion. The case includes: a through hole through which the conductive member penetrates; a concave portion which is at least a portion of a periphery of the through hole and is formed on one of an inner surface and an outer surface of the case, and a convex portion which is formed at a position opposite to the concave portion on an other of the inner surface and the outer surface of the case. In a plan view of the outer surface of the case, the terminal main body has a shape such that at least a portion of the terminal main body is larger than the concave portion.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: October 6, 2020
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventor: Shun Ito
  • Patent number: 10797284
    Abstract: A battery component includes a polymer frame having at least one window, the polymer frame having a first planar side and an opposite second planar side, and a window edge between the first and second planar sides. The battery component also has a battery cell component having a separator and bipolar current collector, the battery cell component being attached to the frame, the separator or bipolar current collector being attached to the first planar side or the window edge. A battery stack, a method for handling the battery component as an individual unit are also provided, electric vehicle battery and electric vehicle are also provided.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: October 6, 2020
    Assignees: VOLKSWAGEN AG, AUDI AG, DR. ING. H.C. F. PORSCHE AG
    Inventors: Mirko Herrmann, Angela Speidel
  • Patent number: 10797355
    Abstract: A non-aqueous electrolyte secondary battery includes a housing, a stack-type electrode array accommodated in the housing, and an electrolyte solution. The electrolyte solution includes an infiltrated portion infiltrated into the stack-type electrode array and an excess portion other than the infiltrated portion. In a set-up state that the non-aqueous electrolyte secondary battery is arranged such that a direction of stack of the stack-type electrode array is orthogonal to a vertical direction, a lower end of the separator projects below lower ends of the positive electrode and the negative electrode. In the set-up state, within a range of an operating state of charge, a projecting portion of any of the plurality separators is always in contact with the excess portion and the plurality of positive electrodes and the plurality of negative electrodes are not in contact with the excess portion at any time.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: October 6, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroki Iguchi
  • Patent number: 10790530
    Abstract: The battery cell for a flow battery includes a cell frame including a frame including a through-window and a manifold serving as an electrolyte flow path, and a bipolar plate blocking the through-window; a positive electrode disposed on one surface side of the bipolar plate; and a negative electrode disposed on another surface side of the bipolar plate. In this battery cell, in the frame, a thickness of a portion in which the manifold is formed is defined as Ft; in the bipolar plate, a thickness of a portion blocking the through-window is defined as Bt; in the positive electrode, a thickness of a portion facing the bipolar plate is defined as Pt; in the negative electrode, a thickness of a portion facing the bipolar plate is defined as Nt; and these thicknesses satisfy Ft?4 mm, Bt?Ft?3.0 mm, Pt?1.5 mm, and Nt?1.5 mm.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: September 29, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kanno, Katsuya Yamanishi, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Moriuchi, Hideyuki Yamaguchi, Hayato Fujita, Kousuke Shiraki, Kiyoaki Hayashi
  • Patent number: 10784516
    Abstract: A novel electrode is provided. A novel power storage device is provided. A conductor having a sheet-like shape is provided. The conductor has a thickness of greater than or equal to 800 nm and less than or equal to 20 ?m. The area of the conductor is greater than or equal to 25 mm2 and less than or equal to 10 m2. The conductor includes carbon and oxygen. The conductor includes carbon at a concentration of higher than 80 atomic % and oxygen at a concentration of higher than or equal to 2 atomic % and lower than or equal to 20 atomic %.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: September 22, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Teruaki Ochiai, Takahiro Kawakami, Takuya Miwa
  • Patent number: 10777831
    Abstract: A system for heating or cooling a fuel cell circuit of a vehicle includes a fuel cell stack, a temperature sensor to detect a fluid temperature of the fluid, a pump to pump the fluid through the fuel cell circuit, and an ECU. The ECU is designed to determine a temperature control signal based on the fluid temperature of the fluid. The ECU is also designed to calculate a desired mass flow rate of the fluid through the fuel cell stack based on the temperature control signal. The ECU is also designed to calculate a desired pump speed of the pump based on the desired mass flow rate of the fluid through the fuel cell stack. The ECU is also designed to control the pump to pump the fluid at the desired pump speed to increase or decrease the fluid temperature of the fluid.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 15, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Daniel Folick, Jared Farnsworth, Shigeki Hasegawa, Kentaro Fukuda