Patents Examined by Monique Wills
  • Patent number: 8993140
    Abstract: A rechargeable battery cell has at least one energy-optimized cell unit and at least one power-optimized cell unit. The power-optimized cell unit is configured in such a way that it can be used to generate a higher power than with the energy-optimized cell unit. The energy-optimized cell unit is configured in such a way that it can be used to store a higher quantity of energy per volume of the energy-optimized cell unit and/or per mass of the energy-optimized cell unit than with the power-optimized cell unit. The at least one energy-optimized cell unit and the at least one power-optimized cell unit are arranged in a common cell housing.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 31, 2015
    Assignee: Continental Automotive GmbH
    Inventors: Michael Schiemann, Peter Birke, Carsten Patzelt, Hans-Georg Schweiger, Bjoern Ripp
  • Patent number: 8993198
    Abstract: Disclosed is a method for preparing a platinum/support catalyst or a platinum alloy/support catalyst, including: a) preparing a dispersion solution including urea, a support and a water-soluble salt of at least one metal(s) having catalytic activity; (b) reacting the dispersion solution at high temperature so as to deposit the metal hydroxide particles derived from the at least one metal(s) on the support; and (c) reducing the metal hydroxide particles. The size and distribution of the platinum particles or platinum alloy particles are greatly improved by the use of urea.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 31, 2015
    Assignee: Korea University Research and Business Foundation
    Inventor: Jong-Sung Yu
  • Patent number: 8980492
    Abstract: A control circuit controls power generation by a power cell in a presence of fuel and oxidant through electrical control. The control circuit may be extended to an array of power cells or array of banks of power cells to configure the cells or banks in series-row and column combinations to generate power in a selectable manner. The controller may include basic power maintenance and control of the array of power cells, and high level control modules may provide unique power generation control to cause the array to cold start, output time-varying waveforms, output multiple DC voltages from a single source of energy, regulate voltage or current, and so forth. Because the power cells may be configured in vast arrays, power cells may be connected to a group of other power cells in the array and driven with a time-varying voltage or pulse to self-clean catalyst of contaminants.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: March 17, 2015
    Assignee: Encite LLC
    Inventors: Stephen A. Marsh, Lawrence W. Hill
  • Patent number: 8980140
    Abstract: The present disclosure relates to a method for making an electrode composite material. In the method, a trivalent aluminum source, a doped element source, and electrode active material particles are provided. The trivalent aluminum source and the doped element source are dissolved in a solvent to form a solution having trivalent aluminum ions and doped ions. The electrode active material particles are mixed with the solution having the trivalent aluminum ions and doped ions to form a mixture. A phosphate radical containing solution is added to the mixture to react with the trivalent aluminum ions and doped ions, thereby forming a number of electrode composite material particles. The electrode composite material particles are heated.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 17, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xian-Kun Huang, Xiang-Ming He, Chang-Yin Jiang, Dan Wang, Jian Gao, Jian-Jun Li
  • Patent number: 8974933
    Abstract: A dual-contact battery pack comprises a housing, a plurality of battery cells located within the housing, a first set of contacts and a second set of contacts coupled to the housing and to the plurality of battery cells. The dual-contact battery further comprises a first control circuit coupled between the plurality of battery cells and the first set of contacts and a second control circuit coupled between the plurality of battery cells and the second set of contacts. The first and second sets of contacts enable the dual-contact battery pack to selectively switch from a first state which prevents current from flowing from the plurality of battery cells to the respective first and second set of contacts to a second state in which current flows from the plurality of battery cells to the respective first and second set of contacts in response to the respective first and second control circuits.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: March 10, 2015
    Assignee: Motorola Solutions, Inc.
    Inventors: Macwien Krishnamurthi, Jauhari Abd Ghafar, Kow Chee Chong, John E. Herrmann, Michael T F Loh, Poh Huat Low, Mark J. Terranova
  • Patent number: 8968925
    Abstract: A method is provided for synthesizing a metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode. The method prepares a first solution of AxFe(CN)6 and Fe(CN)6, where A cations may be alkali or alkaline-earth cations. The method adds the first solution to a second solution containing M-ions and M?-ions. M is a transition metal, and M? is a metal dopant. Subsequent to stirring, the mixture is precipitated to form AxMcM?dFez(CN)n.mH2O particles. The AxMcM?dFez(CN)n.mH2O particles have a framework and interstitial spaces in the framework, where M and M? occupy positions in the framework. Alternatively, the method prepares AaA?bMyFez(CN)n.mH2O particles. A and A? occupy interstitial spaces in the AaA?bMyFez(CN)n.mH2O particle framework. A metal-doped TMHCF electrode is also provided.
    Type: Grant
    Filed: June 1, 2013
    Date of Patent: March 3, 2015
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Jong-Jan Lee, David Evans
  • Patent number: 8969727
    Abstract: A battery module including a plurality of rechargeable batteries each having terminals; and a connection member electrically connecting terminals of neighboring ones of the rechargeable batteries, wherein the connection member includes a terminal hole into which one of the terminals is inserted, and a mounting portion that protrudes inwardly at the terminal hole, and wherein each terminal includes a support portion contacting the mounting portion and supporting the mounting portion.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: March 3, 2015
    Assignees: Samsung SDI Co., Ltd., Robert Bosch GmbH
    Inventors: Tai-Sun You, Jang-Hyun Song, Yong-Sam Kim
  • Patent number: 8968947
    Abstract: The present invention relates to a method for operating a fuel cell system, wherein the fuel cell system comprises at least one reformer for generating a reformate gas and at least one fuel cell for generating an electric current. An increased lifespan for the anode is achieved when with said anode an anode state value is continuously determined which correlates to a current degree of loading with carbon of the anode of the at least one fuel cell and when depending on the anode state value an oxygen-carbon ratio is varied in the reformate gas which is fed to the anode of the respective fuel cell.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: March 3, 2015
    Assignee: Eberspaecher Climate Control Systems GmbH & Co. KG
    Inventors: Karsten Reiners, Sven Wenzel, Christoph Boese
  • Patent number: 8962206
    Abstract: Methods and systems for operating a fuel cell stack having a fuel exhaust stream and a vessel downstream of the fuel cell stack fluidly connected to the fuel exhaust stream are provided. In one embodiment, the method comprises displacing substantially all residual gas in the vessel by providing at least a portion of the fuel exhaust stream to the vessel, and isolating the vessel from the fuel cell stack after the fuel exhaust stream displaces substantially all residual gas in the vessel. At least one bleed down characteristic is determined as fuel exhaust within the vessel is released through an orifice, and an operating condition of the fuel cell stack is set or determined based on the at least one bleed down characteristic. In a specific embodiment, the hydrogen concentration in the fuel exhaust is determined based on the at least one bleed down characteristic.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: February 24, 2015
    Assignee: Daimler AG
    Inventor: Rainer W. Schmidt
  • Patent number: 8962201
    Abstract: Disclosed is a fuel cell apparatus which can continue stable performance, can generate an electric power for a long period, and has a long service life. The fuel cell apparatus comprises: a fuel cell body comprising a power generation unit which can generate an electric power through the reaction between hydrogen and oxygen and a hydrogen generation member which can generate hydrogen through the reaction with water produced upon the generation of the electric power and can supply hydrogen generated to the power generation unit; and a reduction control unit which can control so as to reduce the hydrogen generation member that has been oxidized through the reaction with the produced water.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: February 24, 2015
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Shoichi Uratani, Nobuhisa Ishida
  • Patent number: 8962175
    Abstract: An electrochemical device including a housing and a stack of electrochemical cells in the housing. Each electrochemical cell includes an anode electrode, a cathode electrode, a separator located between the anode electrode and the cathode electrode and an electrolyte. The electrochemical device also includes a current collector located between adjacent electrochemical cells, an anode bus operatively connected to the anodes of the electrochemical cells in the stack and a cathode bus operatively connected to the cathodes of the electrochemical cells in the stack. The housing, the anode electrode, the cathode electrode, the separator, the anode bus and the cathode bus are non-metallic.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: February 24, 2015
    Assignee: Aquion Energy Inc.
    Inventors: Jay Whitacre, Don Humphreys, Wenzhuo Yang, Edward Lynch-Bell, Alex Mohamed, Eric Weber, David Blackwood
  • Patent number: 8962166
    Abstract: A power cell comprises a membrane with a first side and a second side. The membrane has a geometric structure encompassing a volume. The power cell also has a cover that is coupled to the membrane to separate the first flow path from the second flow path at the membrane. In the power cell, first and second catalyst is in gaseous communication with respective first flow path and second flow path and in ionic communication with respective first and second sides of the membrane. Furthermore, a first electrode is electrically coupled to the first catalyst on the first side of the membrane, and a second electrode is electrically coupled to the second catalyst on the second side of the membrane. In another embodiment, the power cell further includes a substrate on which the membrane is coupled.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: February 24, 2015
    Assignee: Encite LLC
    Inventor: Stephen A. Marsh
  • Patent number: 8956760
    Abstract: A structure of intimately contacting carbon-hexacyanometallate is provided for forming a metal-ion battery electrode. Several methods are provided for forming the carbon-hexacyanometallate intimate contact. These methods include (1) adding conducting carbon during the synthesis of hexacyanometallate and forming the carbon-hexacyanometallate powder prior to forming the paste for electrode printing; (2) coating with conducting carbon after hexacyanometallate powder formation and prior to forming the paste for electrode printing; and (3) coating a layer of conducting carbon over the hexacyanometallate electrode.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 17, 2015
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Jong-Jan Lee
  • Patent number: 8956742
    Abstract: A battery separator includes a porous base material and a heat-resistant layer. The porous base material includes a first surface, a second surface opposed to the first surface, and a hole. The hole is formed in the porous base material and causes the first surface and the second surface to communicate with each other. The heat-resistant layer is configured to cover at least the first surface and a surface of the hole. The heat-resistant layer is formed of an inorganic material and deposited by an atomic layer deposition method.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: February 17, 2015
    Assignee: Sony Corporation
    Inventors: Chak Chung Andrew Yu, Takahiro Kawana, Nobuyuki Nagaoka
  • Patent number: 8951680
    Abstract: A magnesium battery electrode assembly is described, including a current collector comprising a metal, an overlayer material on the metal and an electrode layer comprising an electrode active material disposed on the current collector. The overlayer material passivates the metal, or inhibits a corrosion reaction that would occur between the metal and an electrolyte in the absence of the overlayer material.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 10, 2015
    Assignee: Pellion Technologies, Inc.
    Inventors: Robert Ellis Doe, Kristin A. Persson, David Eaglesham, Andrew Gmitter
  • Patent number: 8951678
    Abstract: A solid electrolyte includes a sulfide-based electrolyte and a coating film including a water-resistant, lithium conductive polymer on a surface of the sulfide-based electrolyte, a method of preparing the solid electrolyte, and a lithium battery including the solid electrolyte.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: February 10, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myung-Hwan Jeong, Sung-Hwan Moon, Jae-Hyuk Kim, Yuri Matulevich, Hee-Young Chu, Chang-Ui Jeong, Jong-Seo Choi
  • Patent number: 8951669
    Abstract: The present invention provides an electrode comprising a current collector; an electrode active material layer formed on at least one surface of the current collector and comprising a mixture of electrode active material particles and a first binder polymer; and a porous coating layer formed on the surface of the electrode active material layer, comprising a mixture of inorganic particles and a second binder polymer and having a thickness deviation defined by the following Formula (1), and a manufacturing method thereof: (Tmax?Tmin)/Tavg?0.35??(1) wherein Tmax is a maximum thickness of the porous coating layer formed on the surface of the electrode active material layer, Tmin is a minimum thickness of the porous coating layer and Tavg is an average thickness of the porous coating layer.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: February 10, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jong-Hun Kim, Jeong-Min Ha, Sun-Mi Jin, Bo-Kyung Ryu, Jin-Woo Kim
  • Patent number: 8945792
    Abstract: A separator for a fuel cell includes a metal plate which defines a passage and a manifold, frames having gaskets which are integrated therewith using injection, and a bonding unit for bonding the frames to the metal plate. The gaskets may be differently formed. This resolves process interference problems between conductive surface treatment and gasket cross-linking, obviates deburring of the gasket, and preventes poor injection of the gaskets, which ensures stable quality of the separator, increases productivity and decreases the manufacturing cost.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Hyundai Motor Company
    Inventors: Suk Min Baeck, Sang Mun Jin
  • Patent number: 8945756
    Abstract: An anode electrode for an energy storage device includes both an ion intercalation material and a pseudocapacitive material. The ion intercalation material may be a NASICON material, such as NaTi2(PO4)3 and the pseudocapacitive material may be an activated carbon material. The energy storage device also includes a cathode, an electrolyte and a separator.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: February 3, 2015
    Assignee: Aquion Energy Inc.
    Inventors: Jay Whitacre, Alex Mohamed, Andrew Polonsky, Sneha Shanbhag, Kristen Carlisle
  • Patent number: RE45370
    Abstract: A fuel cell has an anode and a cathode with anode enzyme disposed on the anode and cathode enzyme is disposed on the cathode. The anode is configured and arranged to electrooxidize an anode reductant in the presence of the anode enzyme. Likewise, the cathode is configured and arranged to electroreduce a cathode oxidant in the presence of the cathode enzyme. In addition, anode redox hydrogel may be disposed on the anode to transduce a current between the anode and the anode enzyme and cathode redox hydrogel may be disposed on the cathode to transduce a current between the cathode and the cathode enzyme.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 10, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Adam Heller