Patents Examined by Nader Hossaini
  • Patent number: 8506821
    Abstract: A system for processing drilling mud, the system including a primary separation tank having an inlet for receiving drilling waste and an outlet in fluid communication with a feed line, and an injection pump in fluid communication with a polymer tank and the feed line. The system also includes a clarifying tank in fluid communication with the feed line and a first collection tank, wherein effluent from the clarifying tank is discharged into the first collection tank, and a centrifuge in fluid communication with the clarifying tank and a second collection tank, wherein effluent from the centrifuge is discharged into the second collection tank.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 13, 2013
    Assignee: M-I L.L.C.
    Inventors: John O. Pruett, Gary E. Fout
  • Patent number: 8440087
    Abstract: A thickening tank has a peripheral overflow launder and a centrally disposed feed well. Feedstock slurry is fed to a mixing box which also receives supernatant liquid and is supplemented by flocculated material flowing into the interior of the feed well onto a distributor baffle plate. The supernatant liquid is delivered at a controlled rate from a receiving vessel formed by an upright cylinder provided at its lower end with an impeller of a lift pump which is operated by a controller positioned at the upper end of a vertical drive shaft extending axially through the receiving vessel. The feed well is surrounded by a second launder which is closed at its base and formed with a cup. The lower end of the receiving vessel is spaced from the floor of the cup to draw supernatant liquid exclusively from the second launder rather than from the thickener tank.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: May 14, 2013
    Assignee: Delkor Pty., Ltd
    Inventor: Rhett McElvenny
  • Patent number: 8361327
    Abstract: The present invention relates to an agricultural water-recycling system comprising an iron (Fe)-ionizing module and a method of recycling agricultural water using the same, and more particularly to an agricultural water-recycling system comprising an iron (Fe)-ionizing module and a method of recycling agricultural water using the same, in which phosphorus (P) contained in effluent from a sewage treatment plant is removed by using the iron (Fe)-ionizing module comprising an iron (Fe)-ionizing electrode consisting of an iron plate serving as a cathode and a titanium plate serving as an anode and an electrode-washing device. According to the present invention, an effluent treatment process of a sewage treatment plant and an electrode washing process needed for iron ionization can be simultaneously performed, the iron ionization is controlled depending on the concentration of phosphorus contained in the effluent, thereby improving effluent treatment efficiency.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: January 29, 2013
    Assignees: Korea Rural Community Corporation, Blue Environment N Tech Co., Ltd., Kyungpook National University Industry-Academic Cooperation Foundation
    Inventors: Kwang Ya Lee, Hae Do Kim, Jong Hwa Son, Min Hong, Kyung Sook Choi
  • Patent number: 8343354
    Abstract: A process for desulfurizing a process fluid includes contacting a sulphur compound containing feed stream with an absorbent including an iron, copper or nickel compound capable of forming a metal sulphide, a support material, a first binder and a second binder where the first binder is a cement binder and the second binder is a high aspect ratio aluminosilicate clay binder having an aspect ratio >2 and a ratio of the first binder to the second binder is in the range 2:1 to 3:1.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: January 1, 2013
    Assignee: Johnson Matthey PLC
    Inventor: Matthew John Cousins
  • Patent number: 8337707
    Abstract: The present invention relates to a device, for dewatering dredged material with a dry substance rate below 15%, comprising a tank (2) which is arranged with at least one inlet (5) for dredged material, a first outlet (8) for cleaned water and a second outlet (9) for sludge; the tank further comprises a mixing chamber (3), to which the inlet (5) for dredged masses leads, and a sedimentation chamber (4) in which the first (8) and the second outlet (9) are arranged. The mixing chamber (3) and the sedimentation chamber (4) are in fluid communication.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: December 25, 2012
    Assignee: Leif Ahl Verkstad Aktiebolag
    Inventor: Torbjörn Wold
  • Patent number: 8329040
    Abstract: A new method for removing ammonia nitrogen in coking wastewater is disclosed in this invention. It comprises steps as follow: introducing coking wastewater into a reaction pool into which magnesium and phosphate are added; adding sodium hydroxide to regulate the PH of the mixture around 9.0-10.5; separating the supernatant and the precipitate after proper agitation and natural precipitation; dehydrating the precipitate and then adding alkaline fly ash, water to the dehydrated precipitate and stirring the mixture; decomposing the mixture with heating and absorbing the ammonia gas thereof produced with acidic solution. In consideration of high concentration of ammonia nitrogen in coking wastewater, this invention aims at quick and efficient treatment. The concentration of ammonia nitrogen in treated water meets the highest discharge standard stipulated in [China National] Integrated Wastewater Discharge Standard (GB8978-96).
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: December 11, 2012
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Lili Ding, Tao Zhang
  • Patent number: 8313654
    Abstract: Methods for aggregating suspended solid particles in an aqueous medium involving mixing the aqueous medium with an effective amount of a flocculant to aggregate the solid particles to form aggregated solid particles, and optionally separating the aggregated solid particles from the aqueous medium. The flocculant is obtained from animal blood. The pH of the aqueous medium may be adjusted to a pH of about 4.5 to about 5.7 by the addition of at least one acid or acidic buffer. The temperature of the aqueous medium may be adjusted to a temperature range of about 10° to about 50° C.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: November 20, 2012
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: George Piazza, Rafael Garcia
  • Patent number: 8293105
    Abstract: A contaminant adsorption is provided that includes a self-assembled monolayers on mesoporous supports (SAMMS) on a lattice support structure such as sintered metal wire mesh. Individual wire fibers of the sintered wire mesh may have a film coating of mesoporous material that is functionalized for a target metal. The mesh material is formed into filtration elements with or without particulate filtration media. Systems employing such filtration elements in one or multiple stages are also disclosed with an optional acid was stripping system for regenerating SAMMS and to facilitate reclamation of contaminants that can be refined into usable commercial materials.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: October 23, 2012
    Assignee: Perry Equipment Corporation
    Inventors: John A. Krogue, Timothy L. Holmes
  • Patent number: 8287729
    Abstract: A lightweight water treatment system which can be easily distributed and employed by disaster survivors for treating locally available freshwater sources. The water treatment system includes an internal storage volume for maintaining a predetermined volume of water, a water fill port in communication with the internal storage volume provided at a first end of the elongated container for receiving the predetermined volume of water, a sealing member disposed at about the first end of the elongated container for maintaining the volume of water within the internal storage volume, a second end of the elongated container for receiving sediment settling out of the predetermined volume of water and a discharge port disposed superjacent to the second conically-shaped end for controllably releasing at least a portion of the water maintained within the internal storage volume of the elongated container.
    Type: Grant
    Filed: April 5, 2009
    Date of Patent: October 16, 2012
    Assignee: California Polytechnic Corporation
    Inventors: Trygrve J Lundquist, Patricia M. Compas
  • Patent number: 8287738
    Abstract: The disclosure provides a process for removing dissolved niobium, titanium, and zirconium impurities from an iron chloride solution having an iron concentration of about 50 to about 250 grams/liter comprising: (a) heating the iron chloride solution comprising a compound selected from the group consisting of a niobium compound, titanium compound, zirconium compound, and mixtures thereof, in a vessel, at a temperature of about 120° C. to about 300° C., and at least autogenous pressure, to precipitate the compound as a solid; and (b) separating the solid from the iron chloride solution. The separation of the solid is accomplished by filtration, settling, or centrifugation. In one embodiment, the iron chloride solution is a byproduct of the chlorination process for making titanium dioxide.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 16, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Peter Hill, Mitchell Scott Chinn, Ulrich Klabunde
  • Patent number: 8282832
    Abstract: A regeneration circuit for the in situ regeneration of an inline adsorbent filter, said filter being part of a normal circuit that is configured to remove one or more contaminant from a fluid circulated through a machine; the regeneration circuit includes a regeneration unit configured to remove one or more contaminant from a contaminated fluid creating a regenerated fluid, such that in operation the regenerated fluid is pumped from the regeneration unit and through the filter extracting the or each contaminant from the filter creating the contaminated fluid, this contaminated fluid then returns to the regeneration unit for contaminant removal, the pressure and flow rate of the regenerated fluid through the filter are maintained at a level that ensures minimal damage to the filter; said machine is isolated from the inline filter during regeneration.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: October 9, 2012
    Inventor: Martin Cropp
  • Patent number: 8282835
    Abstract: The invention provides a method of efficiently removing selenium from water. The method involves: adding an oxidant to the liquid, adjusting the liquid's pH to below 7.5, adding ferric salt in an amount such that less than a quarter of selenium in the liquid precipitates and adding a poly dithiocarbamate material to the liquid in an amount such that the amount of poly dithiocarbamate material (in ppm) is greater than the amount of ferric salt (in ppm). This method removes far more selenium than previous methods, and does it using a smaller amount of expensive chemicals. Moreover this method makes it far more likely to achieve cost effective compliance with the ever-increasing environmental standards for selenium in water.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 9, 2012
    Assignee: Nalco Company
    Inventors: Daniel E. Schwarz, Jitendra T. Shah
  • Patent number: 8273249
    Abstract: A new method that integrates electrochemical oxidation and flocculation processes for removing ammonia nitrogen in coking wastewater is disclosed in this invention. It comprises steps as follow: first, adjusting the PH of coking wastewater and adding Fe2+ into the wastewater; then leading the wastewater containing Fe2+ through such 5 areas as pulsed high-voltage discharge oxidation area, pulsed high-frequency DC electrolytic oxidation area, microbubble oxidation area, flocculation area and precipitation area in succession. High-voltage pulse and high-frequency pulse are two different mechanisms for achieving strong oxidation. With help of both solid and liquid catalysts, these two oxidations can work synergistically. The recalcitrant organic chemicals are effectively destroyed and satisfactorily removed out of wastewater. The high-concentration coking waster pretreated with this method will meet Chinese highest discharge standard as long as the routine biochemical treatment is applied thereafter.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: September 25, 2012
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Yunjun Yang, Lili Ding, Xiaolei Shi
  • Patent number: 8252866
    Abstract: The present invention relates to polysaccharides that have been modified by providing azetidinium functionality thereto. Such functionality can be provided by crosslinking a polysaccharide with a resin having azetidinium functional groups. In one or more aspects, the polysaccharide can comprise one or more of starch, guar gum, alginate or derivatives thereof. Polysaccharides having azetidinium functionality according to the present invention are suitable for multiple uses. Such uses include, but are not limited to, removal of one or more solid materials from a liquid, beneficiation of an ore, removal of metallic ions from a liquid; providing oil from bitumen; and removal of mercury from synthetic gypsum. Other uses of the functionalized polysaccharides of the present invention include hydroseeding, dust control and erosion control.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: August 28, 2012
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Michael J. Bush, John B. Hines, James T. Wright
  • Patent number: 8236181
    Abstract: The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: August 7, 2012
    Assignee: Los Alamos National Security, LLC
    Inventors: Enid J. Sullivan, Bryan J. Carlson, Robert M. Wingo, Thomas W. Robison
  • Patent number: 8197695
    Abstract: An absorbent composition suitable for removing mercury, arsenic or antimony from fluid streams includes 5-50% by weight of a particulate sulphided copper compound, 30-90% by weight of a particulate support material, and the remainder one or more binders, wherein the metal sulphide content of the absorbent, other than copper sulphide, is below 5% by weight.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: June 12, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Matthew John Cousins, Robert Logan, Christopher John Young
  • Patent number: 8187469
    Abstract: The invention relates to a method of separating fluids from mixtures using a zeolite known as ITQ-32 consisting of a two-dimensional pore system comprising channels with openings formed by 8 tetrahedra which are interconnected by channels with openings formed by 12 tetrahedra. The inventive method comprises at least the following steps: a) the zeolite ITQ-32 material is brought into contact with the mixture of fluids, b) one or more of the components are adsorbed in the zeolite ITQ-32 material, c) the non-adsorbed components are extracted, and d) one or more of the components adsorbed in the zeolite ITQ-32 material are recovered.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: May 29, 2012
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canos, Fernando Rey Garcia, Susana Valencia Valencia
  • Patent number: 8187470
    Abstract: Some mineral processing plants encounter difficulties in dewatering pulps using clarifier/thickener (C/T) equipment due to a layer of fine particles, air bubbles and chemicals formed at the top of the liquid in the thickener. Such layers are very stable and form a cap on the C/T. The dewatering performance of the C/T then deteriorates under these conditions, and a high percentage of solids is contained in the thickener overflow. A process for removing water from rock slurry containing a wide range of particle sizes in mineral processing operations has been developed. The process includes: (a) classifying the feed slurry into two size fractions, namely a coarse fraction and a fine fraction, (b) treating the fine fraction (and the coarse fraction if required) with a selected flocculant, and (3) thickening the flocculated slurry in sedimentation equipment to separate liquid from solids.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 29, 2012
    Assignee: ARR-MAZ Custom Chemicals, Inc.
    Inventors: Guoxin Wang, Zhengxing Gu, Edward W. Gannon
  • Patent number: 8182698
    Abstract: A chemical process to improve the filtration performance for the removal of gypsum from phosphoric acid/gypsum slurry using a filtration aid that is selected from a class of polymers, lower molecular weight anionic polyelectrolytes, which previously have not been used for this application. The polymer is CMC or Carboxymethyl Cellulose, which is a polymerized cellulose ether. CMC is found to be extremely effective for phosphoric acid/gypsum slurry that was produced from igneous phosphate rock. CMC is also available in food grade, which is novel for filtration aids for the production of phosphoric acid which may be used for human or animal feed.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 22, 2012
    Assignee: ARR-MAZ Custom Chemicals, Inc.
    Inventor: Louis Irwin
  • Patent number: 8177983
    Abstract: A mercury absorbent comprising a metal sulphide, a support material, a first binder and a second binder, wherein the first binder is a cement binder and the second binder is a high aspect ratio binder having an aspect ratio >2. A mercury removal process comprises contacting a mercury containing feed stream with the absorbent.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: May 15, 2012
    Assignee: Johnson Matthey PLC
    Inventor: Matthew John Cousins