Patents Examined by Nadine Preisch
  • Patent number: 6190536
    Abstract: Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: February 20, 2001
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Richard W. Baker
  • Patent number: 6187174
    Abstract: A process for converting a heavy hydrocarbon fraction comprises a step a) for treating a hydrocarbon feed in a hydroconversion section in the presence of hydrogen, the section comprising at least one three-phase reactor containing at least one ebullated bed of hydroconversion catalyst operating in riser mode for liquid and for gas, said reactor comprising at least one means for extracting used catalyst from said reactor and at least one means for adding fresh catalyst to said reactor, b) a step for treating fresh catalyst and conditioning the catalyst using a process leading to a gain in the activity of the catalyst during treatment of the feed in said conversion reactor. This process for conditioning the catalyst before adding it to the reactor can comprise a step for impregnating the catalyst with a chemical substance, or a complete sulphurisation step, or a step for adding an additive mixed with the fresh catalyst which is added.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: February 13, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Frédéric Morel, Stéphane Kressmann, Virginie Harle, Slavik Kasztelan
  • Patent number: 6187175
    Abstract: The present invention is a process to remove a +2 ionic charged, organically bound metal from a petroleum feed. The process includes contacting feed with aqueous carbon dioxide in the essential absence for emulsion formation.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: February 13, 2001
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Saul Charles Blum, Guido Sartori, Martin Leo Gorbaty, David William Savage, David Craig Dalrymple, William Edward Wales
  • Patent number: 6187173
    Abstract: A process and apparatus for treating raw gasoline from catalytic cracking to obtain gasoline with the qualities required for use as motor fuel comprises selective hydrogenation followed by stabilization and optional cooling of the effluent, then sweetening followed by degassing to obtain a dedienized, stabilized and sweetened gasoline. The hydrogenation catalyst preferably comprises 0.1-1% of palladium deposited on a support, sweetening is preferably carried out on a solid catalyst containing an aluminosilicate of an alkali metal (for example sodalite), a metal chelate and activated charcoal. The product from this process can be placed directly in the gasoline pool or, advantageously, fractionated to obtain one or more cuts which can be used as feeds for etherification.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: February 13, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Thierry Chapus, Blaise Didillon, Christian Marcilly, Charles Cameron
  • Patent number: 6187987
    Abstract: Permselective separation of aromatic hydrocarbons from non-aromatic hydrocarbons in a feed stream is accomplished using improved asymmetric membranes. The preferred membranes are fashioned from a polyimide and conditioned with a lubricating oil. Feed streams containing a mixture of aromatic and non-aromatic hydrocarbons are contacted with the dense active layer side of the polyimide membrane under a pressure and temperature sufficient to selectively permeate the desired aromatic hydrocarbon.
    Type: Grant
    Filed: July 30, 1998
    Date of Patent: February 13, 2001
    Assignee: Exxon Mobil Corporation
    Inventors: Arthur A. Chin, Bryan M. Knickerbocker, Jeffrey C. Trewella, Terry R. Waldron, Lloyd S. White
  • Patent number: 6179996
    Abstract: Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: January 30, 2001
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Richard W. Baker, Kaaeid A. Lokhandwala
  • Patent number: 6175046
    Abstract: There is provided a catalyst that is highly resistant to sulfur and nitrogen compounds and active for hydrogenation and shows a low hydrocracking rate and a long service life as well as a method of converting aromatic hydrocarbons in hydrocarbon oil containing sulfur and nitrogen compounds into saturated hydrocarbons by using such a catalyst. A method of hydrogenating aromatic hydrocarbons in hydrocarbon oil containing 80 wt % or more of a fraction having a boiling point of 170 to 390° C. and said aromatic hydrocarbons is characterized in that the hydrocarbon oil is brought into contact with hydrogen in the presence of a catalyst containing clay minerals having principal ingredients of Si and Mg as carrier and at least one of the VIII-group metals of periodic table as active metal.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: January 16, 2001
    Assignee: Nippon Oil Company, Limited
    Inventors: Toshiyuki Enomoto, Yasuo Nakatsuka, Takashi Ino, Minoru Hatayama
  • Patent number: 6171472
    Abstract: Processes and apparatus for providing improved contaminant removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of the contaminant over hydrogen.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: January 9, 2001
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Richard W. Baker
  • Patent number: 6171475
    Abstract: A method for converting a polymer or oligomer derived from an ethylenically unsaturated monomer into alkanes or into a hydrocarbon fraction or a lower oligomer fraction by controlled hydrocracking, wherein the polymer or oligomer is exposed to a catalyst based on a metal hydride or an organometallic complex supported on a mineral carrier, the complex having at least one hydrocarbon ligand and optionally at least one hydride ligand, and the resulting mixture is reacted with hydrogen to cause catalytic hydrocracking of the polymer or oligomer. The polymer or oligomer is broken down into reclaimable products with a lower molecular weight for use, e.g., in the field of polymers, particularly controlled molecular weight polymers, fuels or lubricants.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: January 9, 2001
    Assignee: CPE-Lyon-FCR
    Inventors: V{acute over (e)}ronique Dufaud, Jean-Marie Basset
  • Patent number: 6169218
    Abstract: A process for the selective hydrogenation of the diolefins and acetylenic compounds in a olefin rich aliphatic hydrocarbon streams is disclosed wherein the selective hydrogenation is carried out at 40 to 300° F. under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psia at 0 to 350 psig in a distillation column reactor containing a hydrogenation catalyst which serves as a component of a distillation structure, such as supported PdO encased in tubular wire mesh. Essentially no hydrogenation of the olefins occurs.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: January 2, 2001
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Edward M. Jones, Jr., Lawrence A. Smith, Jr., Gary R. Gildert
  • Patent number: 6165350
    Abstract: Processes and apparatus for providing improved catalytic reforming, specifically improved recovery of reformate and hydrogen from catalytic reformers. The improvement is achieved by passing portions of the reactor effluent or streams derived from the reactor effluent across membranes selective in favor of light hydrocarbons over hydrogen.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: December 26, 2000
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Richard W. Baker
  • Patent number: 6165352
    Abstract: A continuous process for the dehydrogenation of a hydrocarbon and/or oxygenated hydrocarbon feed, comprising contacting the hydrocarbon and/or oxygenated hydrocarbon feed with a dehydrogenation catalyst at elevated temperature in a reaction zone characterised in that the catalyst is capable of retaining hydrogen and (a) is contacted with a feed to form a dehydrogenated product and hydrogen, at least some of the hydrogen formed being adsorbed by the catalyst and/or reacting therewith to reduce at least part of the catalyst; (b) the dehydrogenated product and any unadsorbed/unreacted hydrogen is removed from the reaction zone; (c) at least some of the adsorbed hydrogen is removed from the catalyst and/or at least some of the reduced catalyst is oxidised; and (d) reusing the catalyst from step (c) in step (a).
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: December 26, 2000
    Assignee: BP Chemicals Limited
    Inventors: Jeremy Bernard Cooper, Jonathon Charles Frost, Stephen Roy Partington
  • Patent number: 6165353
    Abstract: An arrangement for the controlled production of an essentially linear array of hydrocarbon feed injection jets maintains stable and reliable jets by passing individual piping for each jet through a support shroud that is located in a contacting vessel. Controlled atomization is provided by independently injecting a uniform quantity of gas medium into each of the plurality of uniformly created feed injection streams upstream of a discharge nozzle that separately discharges each mixed stream of hydrocarbons and gas medium into a stream of catalyst particles at or about the inner end of the support shroud. The feed injection jets are suitable for positioning in an inner location of a large contacting vessel. Uniformity of distribution is obtained by dividing the hydrocarbons streams from an oil chamber into an individual oil conduit for each spray injection nozzle. The individual oil conduits receive separate streams of a gas phase fluid that mixes with feed to pass the mixture to a spray nozzle.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: December 26, 2000
    Assignee: UOP LLC
    Inventors: Brandon Scott Carpenter, Daniel N. Myers
  • Patent number: 6166278
    Abstract: A catalyst for removing olefins from aromatic compounds or mixtures of aromatic compounds wherein the catalyst is a naturally acidic smectite clay containing exchangeable cations wherein the naturally acidic smectite clay has a cation exchange capacity of 40 to 80 meq./100 g. and wherein the exchangeable cations include 5 to 70 meq./100 g. of Al.sup.3+ cations, a process for the preparation of this catalyst including treating a naturally acidic smectite clay with an aluminum salt solution wherein the salt solution includes Al.sup.3+ ions at a concentration of at least 10 meq./100 g. of the catalyst, and a process for the removal of olefins from aromatic compounds or mixtures of aromatic compounds using the above-described catalyst.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: December 26, 2000
    Assignee: Sud-Chemie A.G.
    Inventors: Thomas Engelhardt, Uwe Flessner, Reinhard Hahn, Werner Zschau
  • Patent number: 6156189
    Abstract: The present invention is directed to a Fluid Catalytic Cracking process conducted under fluid catalytic cracking conditions by injecting into at least one reaction zone of a fluid catalytic cracking unit (FCCU) having one or more risers, a plurality of feeds wherein said plurality of feeds comprises at least one feed (.alpha.) and at least another feed (.beta.) wherein said feeds (.alpha.) and (.beta.) (a) differ in Conradson Carbon Residue by at least about 2 wt % points; or (b) differ in hydrogen content by at least about 0.2 wt %; or (c) differ in API gravities by at least about 2 points; or (d) differ in nitrogen content by at least about 50 ppm; or (e) differ in carbon-to-hydrogen ratio by at least about 0.3; or (f) differ in mean boiling point by at least about 200.degree. F; and wherein said feeds (.alpha.) and (.beta.) are alternately injected and wherein said alternate injection maintains said risers in a cyclic steady state, while the rest of the FCC unit is in a steady state.
    Type: Grant
    Filed: April 20, 1999
    Date of Patent: December 5, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Teh Chung Ho, Shun Chong Fung, Daniel Paul Leta
  • Patent number: 6153089
    Abstract: A process for converting undesirable olefinic hydrocarbon streams to hydrogen and petrochemical feedstock e.g. light olefins in C.sub.2 -C.sub.4 range and aromatics especially toluene and xylenes, which comprises simultaneous cracking and reforming at olefin rich hydrocarbons using a catalyst consisting of dehydrogenating metal components, shape selective zeolite components and large pore acidic components in different proportions in a circulating fluidized bed reactor-regenerator system having reactor temperature within 450-750.degree. C. and WHSV of 0.1-60 hour.sup.-1.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: November 28, 2000
    Assignee: Indian Oil Corporation Limited
    Inventors: Asit Kumar Das, Sukumar Mandal, Sobhan Ghosh, Debasis Bhattacharyya, Ganga Shanker Mishra, Jagdev Kumar Dixit, Arvind Pratap Singh, Ashok Kumar Tewari, Satish Makhija, Manoranjan Santra, Latoor Lal Saroya, Shankar Sharma, Satyen Kumar Das
  • Patent number: 6153091
    Abstract: A method is disclosed for decreasing the emissions of chlorine-containing species from a moving bed process for regenerating spent catalyst particles with a recycle gas stream. A recycle gas stream contacts spent catalyst particles at regeneration conditions, thereby producing a flue gas stream. The flue gas stream which contains chlorine-containing species contacts spent catalyst particles at sorption conditions. The spent catalyst particles sorb the chlorine-containing species from the flue gas stream, thereby producing the recycle gas stream. A portion of the recycle gas stream is vented from the process. This method captures and returns to the process the chlorine-containing species that would be lost from the process and that would need to be replaced by the injection of make-up chlorine-containing species. This method results in a significant savings in capital and operating costs of the process.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: November 28, 2000
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Delmar W. Robinson
  • Patent number: 6153806
    Abstract: Reduction of the amount of 1,1-diphenylethane and heavier polyalkylated benzenes produced in the formation of ethylbenzene by alkylation of benzene with ethylene can be effected by reducing the number of hydride transfer active sites on a zeolite beta. One way of producing this "site-modified" beta is to take a parent or precursor zeolite beta that has at least 0.5% carbon on it and treat it under oxidation conditions at a temperature of about 450.degree. C. to about 750.degree. C. The use of such a catalyst gives a product containing less than 0.3 wt. % 1,1-diphenylethane relative to ethylbenzene.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: November 28, 2000
    Assignee: UOP LLC
    Inventor: Gregory J. Gajda
  • Patent number: 6153088
    Abstract: A process for the production of aromatic hydrocarbons. The process involves heating gas oil while under pressure, and maintaining the gas oil at temperature and pressure to break the substantially aliphatic chains from the gas oil core structure of two or more aromatic rings, as well as to break the aliphatic chains to smaller molecules. The process yields products which include lighter aliphatic material, as well as aromatic hydrocarbons.
    Type: Grant
    Filed: September 24, 1996
    Date of Patent: November 28, 2000
    Inventors: Stephen C. Paspek, Jeffrey B. Hauser, Christopher P. Eppig
  • Patent number: 6153086
    Abstract: A hydroprocessing process includes a cocurrent flow liquid reaction stage, a countercurrent flow liquid reaction stage and a vapor reaction stage in which feed components are catalytically hydroprocessed by reacting with hydrogen. Both liquid stages both produce a liquid and a vapor effluent, with the cocurrent stage liquid effluent the feed for the countercurrent stage and the countercurrent stage liquid effluent the hydroprocessed product liquid. Both liquid stage vapor effluents are combined and catalytically reacted with hydrogen in a vapor reaction stage, to form a hydroprocessed vapor. This vapor is cooled to condense and recover a portion of the hydroprocessed hydrocarbonaceous vapor components as additional product liquid. The uncondensed vapor is rich in hydrogen and is cleaned up if necessary, to remove contaminants, and then recycled back into the cocurrent stage as hydrogen-containing treat gas.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: November 28, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Ramesh Gupta, Henry Jung, Edward S. Ellis, James J. Schorfheide, Larry L. Iaccino