Patents Examined by Nancy J Leith
  • Patent number: 11753655
    Abstract: The present disclosure provides methods and compositions for the treatment of diseases and/or disorders in a subject, including, but not limited to neurological disorders such as giant axonal neuropathy. The methods described herein include direct administration of a gene therapy (e.g. an rAAV viral vector) to a subject via injection into a vagus nerve (e.g. the left vagus nerve) of the subject.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: September 12, 2023
    Assignee: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Rachel M. Bailey, Steven J. Gray
  • Patent number: 11746347
    Abstract: The present disclosure provides compositions of matter, methods and instruments for editing nucleic acids in live yeast cells.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: September 5, 2023
    Assignee: Inscripta, Inc.
    Inventors: Miles Gander, Tian Tian, Skylar Stefani, Patrick Westfall
  • Patent number: 11746346
    Abstract: The present invention relates to a genetic tool comprising at least two different nucleic acids allowing the transformation, by homologous recombination, of a bacterium of the genus Clostridium, typically of a solventogenic bacterium.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: September 5, 2023
    Assignees: STICHTING WAGENINGEN RESEARCH, IFP ENERGIES NOUVELLES
    Inventors: Francois Wasels, Nicolas Lopes Ferreira, Florent Collas, Ana Lopez Contreras
  • Patent number: 11742058
    Abstract: Disclosed herein, are systems and methods for analyzing complex data signals using artificial intelligence and/or deconvolution algorithms to determine output pertaining to the state or status of one or more parameters. Data sets may include signals from various sources that can confound or distort the signals of interest. Accordingly, disclosed herein are deconvolution algorithms that enable the determination of the status of sources that correspond to the signals of interest.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: August 29, 2023
    Assignee: COFACTOR GENOMICS, INC.
    Inventors: Ian Schillebeeckx, Jon R. Armstrong, Jeffrey Hiken
  • Patent number: 11739290
    Abstract: The present disclosure provides instruments, modules and methods for improved detection of edited cells following nucleic acid-guided nuclease genome editing. The disclosure provides improved automated instruments that perform methods—including high throughput methods—for screening cells that have been subjected to editing and identifying cells that have been properly edited.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: August 29, 2023
    Assignee: INSCRIPTA, INC
    Inventors: Andrew Garst, Richard Fox, Phillip Belgrader, Don Masquelier
  • Patent number: 11725183
    Abstract: The present invention relates to an in vitro method of culturing a segmented filamentous bacterium strain, comprising co-culturing said segmented filamentous bacterium strain with a eukaryotic host cell, wherein the culture is performed at an O2 level inferior to 5% in a rich tissue culture liquid medium containing bacterial medium components including iron. The present invention also relates to methods for genetically modifying a segmented filamentous bacterium strain comprising a step a culturing the strain in vitro.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: August 15, 2023
    Assignees: INSTITUT PASTEUR, FONDATION IMAGINE, ASSISTANCE PUBLIQUE—HOPITAUX DE PARIS, UNIVERSITE PARIS CITE, INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)
    Inventors: Gerard Eberl, David Bikard, Pamela Schnupf, Nadine Cerf Bensussan, Valerie Gaboriau-Routhiau, Philippe Sansonetti
  • Patent number: 11725204
    Abstract: Compositions and methods for gene editing are provided. The methods employ an oligo-based annealing mechanism that is rooted in the process of DNA replication rather than homologous recombination (HR). Oligo incorporation efficiencies are comparable and often exceed those of CRISPR/cas9 editing without the need for double strand breaks (DSBs). By relying on the multiplex annealing of oligos rather than DSBs the process is highly scalable across a genomic region of interest and can generate many scarless modifications of a chromosome simultaneously. Combinatorial genomic diversity can be generated across a population of cells in a single transformation event; genomic landscapes can be traversed through successive iterations of the process, and genome-wide changes can be massively parallelized and amplified through systematic strain mating.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: August 15, 2023
    Assignee: YALE UNIVERSITY
    Inventors: Edward Barbieri, Farren Isaacs
  • Patent number: 11718861
    Abstract: Described herein is a method of preventing or treating a disease in a mammalian subject, comprising administering to the subject who is in need thereof an effective dosage of a pharmaceutical composition comprising a virus like particle (VLP) comprising: an alphavirus replicon comprising a recombinant polynucleotide, wherein the polynucleotide comprises a sequence encoding both subunits of a human class II major histocompatibility antigen, a retroviral gag protein, and a fusogenic envelope protein, wherein the VLP does not contain an alphavirus structural protein gene.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: August 8, 2023
    Assignee: The USA, as represented by the Secretary, Dept. of Health and Human Services
    Inventors: Deb K. Chatterjee, Stanislaw J. Kaczmarczyk
  • Patent number: 11713472
    Abstract: Methods of RNA-guided DNA endonuclease-mediated genome editing in Bacteria and Archaea are provided.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: August 1, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: William W. Metcalf, Dipti Dinkar Nayak
  • Patent number: 11710536
    Abstract: The present disclosure provides methods and systems for identification of genomic regions for therapeutic targeting. A method for identifying one or more genomic regions for therapeutic targeting, which may facilitate re-programming of a cell from one phenotypic state to another, may comprise: providing single-cell RNA-seq data for a plurality of diseased cells and a plurality of normal cells of a cell type; mapping the single-cell RNA-seq data for the plurality of diseased cells and the plurality of normal cells into a latent space corresponding to a plurality of phenotypic states of the cell type; identifying, based at least in part on a topology of the latent space, the one or more genomic regions for therapeutic targeting; and electronically outputting the one or more genomic regions for therapeutic targeting.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: July 25, 2023
    Assignee: Algen Biotechnologies, Inc.
    Inventors: Spencer Charles Knight, Chun-Hao Huang
  • Patent number: 11702677
    Abstract: Described herein are methods and vectors for rational, multiplexed manipulation of chromosomes within open reading frames (e.g., in protein libraries) or any segment of a chromosome in a cell or population of cells, in which various CRISPR systems are used.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: July 18, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO
    Inventors: Andrew Garst, Ryan T. Gill
  • Patent number: 11690866
    Abstract: Provided herein are compositions and methods for modifying a predetermined nucleic acid sequence. A programmable nucleoprotein molecular complex containing a polypeptide moiety and a specificity conferring nucleic acid (SCNA) which assembles in-vivo, in a target cell, and is capable of interacting with the predetermined target nucleic acid sequence is provided. The programmable nucleoprotein molecular complex is capable of specifically modifying and/or editing a target site within the target nucleic acid sequence and/or modifying the function of the target nucleic acid sequence.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: July 4, 2023
    Assignee: TARGETGENE BIOTECHNOLOGIES LTD.
    Inventors: Yoel Moshe Shiboleth, Dan Michael Weinthal
  • Patent number: 11692191
    Abstract: The present invention relates to a technique for genomic library screening and provides a method for separating, capturing, analyzing, and retrieving cells and cell products by using a microstructure that can be preferentially applied to the field of antibody engineering for the development of new therapeutic antibodies and can be extensively applied to multiple genetic/phenotypic analysis of various biochemical molecules, for example, in the field of protein engineering and metabolic engineering.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: July 4, 2023
    Assignee: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: Sung Hoon Kwon, Jun Hoi Kim, Seo Hee Chang, Ok Ju Kim
  • Patent number: 11685917
    Abstract: The application relates to a deep scanning mutagenesis library to interrogate phenotypic changes in a population of cells comprising a plurality of CRISPR-Cas system guide RNAs targeting genomic sequences within at least one continuous genomic region, wherein the guide RNAs target at least 100 genomic sequences upstream of a PAM sequence for every 1000 base pairs within the continuous genomic region and methods for their use.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: June 27, 2023
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, Children's Medical Center Corporation
    Inventors: Daniel E. Bauer, Stuart H. Orkin, Neville Espi Sanjana, Ophir Shalem, Jason Wright, Feng Zhang
  • Patent number: 11680268
    Abstract: This application provides improved methods of editing the genome of a target cell. Cas9 molecules can be used to create a break in a genomic region of interest. To increase the likelihood that the break is repaired by homology-directed repair (HDR), the cell can be contacted with an HDR-enhancer. The cell may be, e.g., a human cell, a non-human animal cell, a bacterial cell, or a plant cell.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: June 20, 2023
    Assignee: Editas Medicine, Inc.
    Inventor: Cecilia Cotta-Ramusino
  • Patent number: 11680259
    Abstract: This invention relates to recombinant Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) arrays and recombinant nucleic acid constructs encoding Type I-E CASCADE complexes as well as plasmids, retroviruses and bacteriophage comprising the same.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: June 20, 2023
    Assignee: North Carolina State University
    Inventors: Rodolphe Barrangou, Claudio Hidalgo-Cantabrana
  • Patent number: 11674155
    Abstract: The invention pertains to the field of adaptive cell immunotherapy. It aims at reducing the occurrence of translocations and cell deaths when several specific endonuclease reagents are used altogether to genetically modify primary immune cells at different genetic loci. The method of the invention allows to yield safer immune primary cells harboring several genetic modifications, such as triple or quadruple gene inactivated cells, from populations or sub-populations of cells originating from a single donor or patient, for their subsequent use in therapeutic treatments.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: June 13, 2023
    Assignee: CELLECTIS
    Inventors: Jean-Pierre Cabaniols, Jean-Charles Epinat, Philippe Duchateau
  • Patent number: 11667933
    Abstract: The invention relates to a method comprising a) providing a host cell said host cell comprising an episomal replicon, said episomal replicon comprising a donor nucleic acid sequence, said host cell further comprising a target nucleic acid, b) providing helper protein(s) capable of supporting nucleic acid recombination in said host cell c) providing helper protein(s) and/or RNAs capable of supporting nucleic acid excision in said host cell wherein said donor nucleic acid sequence comprises in order. 5?-homologous recombination sequence 1-sequence of interest-homologous recombination sequence 2-3? wherein said sequence of interest comprises a positive selectable marker d) inducing excision of said donor nucleic acid sequence e) incubating to allow recombination between the excised donor nucleic acid and said target nucleic acid f) selecting for recombinants having incorporated said donor nucleic acid into said target nucleic acid. Also described are nucleic acids and cells.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: June 6, 2023
    Inventors: Julius Fredens, Kaihang Wang, Jason W. Chin
  • Patent number: 11667911
    Abstract: The present disclosure is directed to methods of producing a modified nucleic acid comprising a precise deletion in a target nucleic acid in a cell comprising generating, within the cell, a first single strand break on a first strand of the target nucleic acid and a second single strand break on a second strand of the target nucleic acid, thereby forming a double strand break in the target nucleic acid having a first 3? overhang and a second 3? overhang; processing the first 3? overhang and the second 3? overhang with an exonuclease molecule, thereby deleting the segment of the target nucleic acid that was located between the first single strand break and the second single strand break, and forming a processed double strand break; and allowing the processed double strand break to be repaired by at least one DNA repair pathway, thereby producing the modified nucleic acid comprising the precise deletion in the target nucleic acid in the cell.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 6, 2023
    Assignee: Editas Medicine, Inc.
    Inventors: Anne Helen Bothmer, Cecilia Cotta-Ramusino, Luis A. Barrera
  • Patent number: 11661589
    Abstract: Provided are modified microorganisms which are modified such that their growth can be controlled using exogenously provided compounds. The microorganisms can be modified by genetic alterations that include a promoter inducible by a first exogenously supplied compound. The promoter can be configured to drive expression of an RNA coding sequence that may be essential to growth of the microorganism. The microorganisms may also be modified to include site specific recombinase recognition sites flanking or within the RNA coding sequence so that expression of the corresponding site specific recombinase will disrupt transcription of the RNA. The site specific recombinase can be configured such that it expression and/or activity is suppressed by a second exogenously supplied compound. Methods of making the modified microorganisms and kits that contain reagents for making and using the modified microorganisms are also provided.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 30, 2023
    Assignees: New York University, The Johns Hopkins University
    Inventors: Jef D. Boeke, Neta Agmon, Yizhi Cai