Abstract: The present invention discloses a programmable gain amplifier having mode-switching mechanism. An operational amplifier includes a first input terminal, a second input terminal and an output terminal. The second input terminal is coupled to a ground terminal. The output terminal generates an output signal. A variable resistor and a first switch are coupled in series between a first terminal and a second terminal that coupled to the first input terminal. A first variable capacitor and a second switch are coupled in series between the first terminal and the second terminal. A second variable capacitor and a third switch are coupled in series between the first terminal and the ground terminal. A low-pass resistor and a low-pass capacitor are coupled in parallel between the first input terminal and the output terminal. An input resistor is coupled between a signal input terminal and the first terminal to receive an input signal from the signal input terminal.
Abstract: Power amplifiers with supply capacitor switching are provided herein. In certain embodiments, a power amplifier system includes a power amplifier that provides amplification to a radio frequency (RF) signal, a power management circuit that controls a voltage level of a supply voltage of the power amplifier, a supply capacitor having a first end connected to the supply voltage, and a bulk n-type field-effect transistor (NFET) switch. The power management circuit is operable in multiple supply control modes (for example, an average power tracking mode and an envelope tracking mode). Additionally, the bulk NFET switch is controlled based on the supply control mode of the power management circuit. The bulk NFET switch includes a ground NFET in series with a second end of the supply capacitor and a ground voltage, and a discharge NFET connected between the second end of the supply capacitor and the supply voltage.
Abstract: Provided is a low noise amplifier circuit for a quantum computer. The low noise amplifier circuit comprises a plurality of input stages, a shared output stage, and a voltage controller. Each input stage is coupled to one or more qubits. The shared output stage is coupled to the plurality of input stages. The voltage controller is coupled to the plurality of input stages and the shared output stage. The voltage controller is configured to selectively activate an input stage of the plurality of input stages in order to read a qubit coupled to the input stage.
Type:
Grant
Filed:
February 21, 2022
Date of Patent:
April 15, 2025
Assignee:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Mridula Prathapan, Thomas Morf, Peter Mueller, Marcel A. Kossel, Bogdan Cezar Zota, Pier Andrea Francese
Abstract: Various embodiments of the disclosure relate to a device and a method for supplying power to a plurality of power amplifiers in an electronic device.
Abstract: A method of maximizing power efficiency for a power amplifier system comprises obtaining a power supply voltage; determining a first voltage level sufficient for a power amplifier of the power amplifier system to output an output power; determining a second voltage level lower than the first voltage level; determining whether the power amplifier is activated, to generate a determination result; determining to convert the power supply voltage into a supply voltage with the first voltage level or the second voltage level according to the determination result; and supplying the power amplifier with the supply voltage.
Type:
Grant
Filed:
February 21, 2022
Date of Patent:
February 11, 2025
Assignee:
Rafael Microelectronics, Inc.
Inventors:
Chung-Cheng Wang, Kang-Ming Tien, Tzu-Yun Wang