Patents Examined by Nathan M Cors
  • Patent number: 11888521
    Abstract: A master station device includes a processor that outputs a subcarrier modulation signal, and a transmitter that maps an in-phase (I) component and a quadrature-phase (Q) component of the subcarrier modulation signal to an optical signal to be transmitted to a fronthaul.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: January 30, 2024
    Assignee: Panasonic Holdings Corporation
    Inventor: Yuta Seki
  • Patent number: 11881897
    Abstract: A photo-electron fusion switch that can perform optical communications without any trouble, even when nodes of a communication source and a communication partner that are large in transmission capacity are connected, and makes it possible to realize a concentrated arrangement of devices having similar functions and reduce the communication processing time is connected to communication source's information processing devices and communication partner's information processing devices and information processing devices that are each different in transmission speed so as to configure an optical network system.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: January 23, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hideki Nishizawa, Seiki Kuwabara, Seiji Okamoto, Shuto Yamamoto, Tetsuro Inui, Shunichi Soma, Kenya Suzuki, Osamu Moriwaki, Keita Yamaguchi
  • Patent number: 11871165
    Abstract: Provided are techniques, devices and systems that enable updating of a reportable parameter table database when a reconfigured optical communication path is formed by switching performed by a branching unit in an undersea optical communication transmission system. A processor may obtain system attributes of each respective segment of a number of segments of the reconfigured optical communication path from a first end point to a second endpoint. The system attributes of each respective segment of the number of segments may be evaluated from the first end point to the second endpoint of the reconfigured optical communication path. A reportable parameter table may be generated based on the evaluated system attributes that includes a listing of operational and structural parameters of system from the first endpoint to the second endpoint of the reconfigured optical communication path.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: January 9, 2024
    Assignee: SUBCOM, LLC
    Inventors: Yunlu Xu, Richard Kram, Yuriy Tsaltskan, Lara Denise Garrett, Stacy Test
  • Patent number: 11870499
    Abstract: Methods for configuring an optical link in which a distribution of transmission data rates and line rates are configured for a predetermined amount of optical bandwidth to maximize transmission capacity. In these methods, a controller of an optical network obtains input parameters that include a signal-to-noise ratio (SNR) for optical signals and an allocated bandwidth of the optical link, further obtains, for each line rate, a mapping of transmission data rates along a frequency spectrum of the allocated bandwidth compatible with the SNR, and generates a channel plan in which a number of traffic modes and a distribution of a plurality of channels in the allocated bandwidth are set to maximize transmission capacity. The plurality of channels is used for transmitting the signals on the optical link. The controller configures at least one optical network element in the optical network to establish the optical link based on the channel plan.
    Type: Grant
    Filed: January 4, 2023
    Date of Patent: January 9, 2024
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Claudio Crognale, Giovanni Marenco, Maurizio Di Vizio, Silvia Turolla
  • Patent number: 11863297
    Abstract: A digital receiver is configured to process a polarization multiplexed carrier from a communication network. The polarization multiplexed carrier includes a first polarization and a second polarization. The receiver includes a first lane for transporting a first input signal of the first polarization, a second lane for transporting a second input signal of the second polarization, a dynamic phase noise estimation unit disposed within the first lane and configured to determine a phase noise estimate of the first input signal, a first carrier phase recovery portion configured to remove carrier phase noise from the first polarization based on a combination of the first input signal and a function of the determined phase noise estimate, and a second carrier phase recovery portion configured to remove carrier phase noise from the second polarization based on a combination of the second input signal and the function of the determined phase noise estimate.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: January 2, 2024
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Junwen Zhang, Zhensheng Jia, Mu Xu, Haipeng Zhang, Luis Alberto Campos, Curtis Dean Knittle
  • Patent number: 11853871
    Abstract: A system includes a first unit configured to generate a plurality of modulator control signals, and a processor unit. The processor unit includes: a light source or port configured to provide a plurality of light outputs, and a first set of optical modulators coupled to the light source or port and the first unit. The optical modulators in the first set are configured to generate an optical input vector by modulating the plurality of light outputs provided by the light source or port based on digital input values corresponding to a first set of modulator control signals in the plurality of modulator control signals, the optical input vector comprising a plurality of optical signals. The processor unit also includes a matrix multiplication unit that includes a second set of optical modulators.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: December 26, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Huaiyu Meng, Yichen Shen, Arash Hosseinzadeh, Yelong Xu, Yanfei Bai, Ronald Gagnon, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman
  • Patent number: 11855360
    Abstract: Disclosed herein is a method for communicating between platforms, comprising the steps of initializing a first platform and a second platform; optically tracking a movement of the second platform by the first platform; and optically communicating bi-directionally between the first platform and the second platform. Disclosed herein is an optical communication device comprising various elements including but not limited to: a processor configured to provide at least a tracking mode and a communications mode; an input-output interface coupled to the processor; an electro-optic controller coupled to the input-output interface; an acquisition-tracking portion coupled to the electro-optic controller; and a communication portion coupled to the electro-optic controller.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: December 26, 2023
    Assignee: 4S-Silversword Software and Services, LLC
    Inventors: William Robert Allen Ziegler, Ronald H. Smith
  • Patent number: 11848699
    Abstract: A system comprises an internal optical switch, couplable to a plurality of fibers, configured to automatically select fibers in succession from the plurality of fibers for testing. An optical test module, coupled to the internal optical switch, is configured to generate or receive one or more wavelengths of light on each selected fiber of the plurality of fibers. A communications interface, coupled to the internal optical switch and the optical test module, is configured to establish a communications link between the system and a second system to test each selected fiber.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: December 19, 2023
    Assignee: VeEX Inc.
    Inventor: Paul Chang
  • Patent number: 11838049
    Abstract: In some examples, OTDR event detection and light power level measurement-based fiber optic link certification may include performing, at one end of a device under test (DUT) of a network, a light power level measurement. An OTDR measurement may be performed at the one end of the DUT to detect at least one event associated with the DUT. Based on analysis of the light power level measurement and the OTDR measurement, an event classification may be generated to classify the at least one event associated with the DUT.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: December 5, 2023
    Assignee: VIAVI SOLUTIONS INC.
    Inventor: Benoit Morel
  • Patent number: 11838105
    Abstract: This disclosure describes digitally generating sub-carriers (SCs) to provide isolation and dynamic allocation of bandwidth between uplink and downlink traffic between transceivers that are communicatively coupled via a bidirectional link including one or more segments of optical fiber. Separate uplink and downlink communication channels may be created using digitally generated SCs and using the same transmitter laser. In some implementations, one or more of the nodes include a transceiver having at least one laser and one digital signal processing (DSP) operable for digitally generating at least two SCs and detecting at least two SCs. The transceiver can transmit selected SCs, and can receive other SCs. Accordingly, the transceiver can facilitate bidirectional communication, for example, over a single optical fiber link. In some instances, techniques can facilitate dynamic bandwidth assignment by facilitating adding or blocking of optical subcarriers from transmission in an uplink or downlink direction.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: December 5, 2023
    Assignee: Infinera Corporation
    Inventors: Magnus Olson, Amir Rashidinejad
  • Patent number: 11818242
    Abstract: An optical system includes a transmitter including transmitter circuitry configured to cause transmission of a transmitted optical signal over a fiber link on an X polarization and a Y polarization; and a receiver including receiver circuitry configured to receive a received optical signal from the fiber link on the X polarization and the Y polarization, wherein the transmitter circuitry is configured to cause State of Polarization (SOP) changes on the X polarization and the Y polarization for a test of the fiber link. The transmitter circuitry and the receiver circuitry are built-in with the transmitter and the receiver, respectively, for performance of the test.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: November 14, 2023
    Inventors: Ahmad Abdo, Shahab Oveis Gharan, Sadok Aouini, Naim Ben-Hamida, Timothy James Creasy, Lukas Jakober, Yalmez M. A. Yazaw
  • Patent number: 11811452
    Abstract: Optical fiber interconnection systems and methods are described. One aspect includes receiving a pulse-amplitude modulated (PAM4) electrical signal at a transmitter for transmission to a receiver. The PAM4 electrical signal is decoded into a pair of non-return-to-zero (NRZ) electrical signals. The pair of NRZ electrical signals is converted into a corresponding pair of NRZ optical signals including a first NRZ optical signal and a second NRZ optical signal. The first NRZ optical signal is transmitted to a receiver over an communication channel. The second NRZ optical signal is transmitted to the receiver over the optical communication channel.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: November 7, 2023
    Assignee: WINGCOMM Co. Ltd.
    Inventors: Shuang Sun, Zuodong Wang, Wei Mao, Yun Bai
  • Patent number: 11811458
    Abstract: A power sourcing equipment includes a laser oscillator and a modulator. The laser oscillator converts electric power into feed light. The modulator modulates, based on transmission information, a phase of the feed light output from the laser oscillator. The feed light phase-modulated by the modulator is output to outside of the power sourcing equipment. A powered device includes a photoelectric conversion element and a demodulator. The photoelectric conversion element converts feed light input from outside of the powered device into electric power. The demodulator detects a phase of the feed light to restore transmission information.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: November 7, 2023
    Assignee: KYOCERA CORPORATION
    Inventor: Shuichi Tamate
  • Patent number: 11804900
    Abstract: The present disclosure aims to make it possible to simultaneously establish communication between many freely-selected radio terminals without using a complex relay network or a plurality of radio relays. The present disclosure is a communication network system including: a plurality of optical-radio converters 521-1 to 521-n that convert a radio signal and an optical fiber radio signal into each other; and a path controller that is connected to the plurality of optical-radio converters 521-1 to 521-n through optical fiber transmission lines 531-1 to 531-n, receives input of an optical fiber radio signal transmitted from any optical-radio converter of the plurality of optical-radio converters 521-1 to 521-n from the optical fiber transmission line connected to the optical-radio converter, and outputs the optical fiber radio signal to the optical fiber transmission line connected to a set optical-radio converter of the plurality of optical-radio converters 521-1 to 521-n.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: October 31, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Satoshi Narikawa, Tatsuya Fukui, Takahito Kirihara, Katsuya Minami, Satoshi Ikeda, Shunsuke Saruwatari, Takashi Watanabe, Kazuhiko Kinoshita
  • Patent number: 11804906
    Abstract: A system includes a transmitter configured to output an optical signal. The transmitter includes a seed laser, an optical array including a plurality of array elements, and a plurality of phase shifters in a multi-layer arrangement. The multi-layer arrangement includes a plurality of layers between the seed laser and the optical array, wherein a first layer of the plurality of layers transmits light to a second layer of the plurality of layers. The first layer has fewer phase shifters than the second layer. The multi-layer arrangement also includes a plurality of branches wherein each branch includes a phase shifter from each of the plurality of layers connected in series between the seed laser and one of the plurality of array elements. Each phase shifter is configured to shift the optical signal incrementally to amass a total phase shift for each of the plurality of array elements.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: October 31, 2023
    Assignee: X DEVELOPMENT LLC
    Inventors: Baris Ibrahim Erkmen, Devin Brinkley, Paul Epp, John Moody
  • Patent number: 11799557
    Abstract: A communication device includes an amplitude conversion unit configured to generate a symbol sequence according to a bit sequence, a distribution matching unit configured to add redundant bits to the symbol sequence through probabilistic amplitude shaping (PAS) coding, an insertion unit configured to insert a pilot symbol into the symbol sequence to which the redundant bits have been added and transmit the symbol sequence into which the pilot symbol has been inserted to a transmission path, and a control unit configured to acquire information on the transmission path and change, according to the information on the transmission path, allocation of the redundancy of the PAS coding and the redundancy of the pilot symbol in a range of redundancy that is able to be allocated depending on a predetermined throughput.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: October 24, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takeshi Kakizaki, Fukutaro Hamaoka, Masanori Nakamura, Takeo Sasai
  • Patent number: 11791905
    Abstract: A system for estimating an imbalance between electrical-optical responses of an in-phase (I) channel and a quadrature (Q) channel in an optical amplitude and phase modulator (optical IQ modulator) includes an optical detector (PD), an analog-digital converter (ADC), and an imbalance operation unit that estimates an imbalance between electrical-optical responses of an I channel and a Q channel in the optical IQ modulator, wherein the imbalance operation unit includes an input signal information receiving unit that receives information regarding a first modulation signal, and an intensity information receiving unit that receives intensity information of the digitalized output signal from the ADC, and the imbalance operation unit estimates an imbalance between electrical-optical responses of an I channel and a Q channel in the optical IQ modulator using information regarding a first modulation signal and intensity information of the digitalized output signal.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: October 17, 2023
    Assignee: NATIONAL INSTITUTE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
    Inventors: Yuki Yoshida, Naokatsu Yamamoto
  • Patent number: 11777602
    Abstract: An apparatus and method arbitrates bidirectional optical communication across optical link ends of independent controller area network buses. A mobile device has a battery management system and a first controller area network bus having a first optical link end, and a charging station has a second controller area network bus having a second optical link end. When the mobile device aligns with the charging station for charging, the optical links ends align to allow communication between the battery management system and the charging station regarding charging the battery. The arbiter apparatus is operationally interposed between the optical link ends and arbitrates the bidirectional communication by delaying a subsequent communication from one of the battery management system and the charging station until a dominant bit of a prior communication is released, thereby preventing the controller area network buses from transmitting simultaneously across the optical link ends.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: October 3, 2023
    Assignee: Nidec Motor Corporation
    Inventors: Cosma Pabouctsidis, Christopher J. Schur
  • Patent number: 11777597
    Abstract: Modules for optical time-domain reflectometry (OTDR) are connected via at least one fiber link of a fiber optic communication network. The modules can perform OTDR operations on the at least one fiber link. In addition, the modules can establish an inter-node communication channel between each other on the at least one fiber link. The channel allows the OTDR modules to synchronize their OTDR operations and to exchange information, such as OTDR traces, between each other.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: October 3, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: Michael J. L. Cahill, Aravanan Gurusami, Timothy K. Zahnley
  • Patent number: 11777613
    Abstract: A polarization change tracking apparatus, a processing apparatus for a received signal and methods thereof. The polarization change tracking method includes: estimating a polarization change speed in a link according to a received signal; setting a response coefficient of polarization tracking according to a relationship between an estimated polarization change speed and a predetermined value, to make a response of polarization tracking and a response of adaptive equalization be consecutive; and performing compensation for polarization change on the received signal according to a set response coefficient of polarization tracking.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: October 3, 2023
    Assignee: FUJITSU LIMITED
    Inventors: Jingnan Li, Yangyang Fan, Zhenning Tao