Patents Examined by Nianxiang Zou
  • Patent number: 11952586
    Abstract: Herein is reported a method for the co-cultivation of single deposited B-cells, which can be of any source, with EL-4 B5 feeder cells in a suitable co-cultivation medium. In the herein reported methods the EL-4 B5 cells have been irradiated with a dose of less than 40 Gy, preferably 9.5 Gy or less. Thereby the EL-4 B5 cells have a higher viability and maintain the ability to divide in cultivation at doses less than 6 Gy.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 9, 2024
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Sonja Offner, Friederike Jung
  • Patent number: 11952637
    Abstract: Provided herein are methods and compositions for rapid, highly sensitive detection of SARS-CoV-2 in biological samples. In particular, provided herein is a rapid, low-cost method for detecting SARS-CoV-2 that provides reliable, visible test results and does not require PCR reagents, elaborate biosafety precautions, or sophisticated laboratory equipment.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: April 9, 2024
    Assignees: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY, THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Alexander Green, Keith Pardee, Margot Karlikow, Kaiyue Wu, Masoud Norouzi
  • Patent number: 11946075
    Abstract: A method of producing plant virus-like particles includes freeze drying an aqueous solution of plant virus particles to produce a substantially RNA-free plant virus-like particles.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: April 2, 2024
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Jonathan Pokorski, Nicole Steinmetz, Parker Lee
  • Patent number: 11939597
    Abstract: This invention relates to modified parvovirus inverted terminal repeats (ITRs) that do not functionally interact with wild-type large Rep proteins, synthetic Rep proteins that functionally interact with the modified ITRs, and methods of using the same for delivery of nucleic acids to a cell or a subject. The modifications provide a novel Rep-ITR interaction that limits vector mobilization, increasing the safety of viral vectors.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: March 26, 2024
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Curtis Hewitt, Richard Jude Samulski
  • Patent number: 11931409
    Abstract: Compositions are provided comprising messenger RNA constructs having at least one open reading frame (ORF), wherein the ORF is operatively linked to at least one untranslated region (UTR), wherein the UTR comprises at least one organ protection sequence (OPS), wherein the OPS sequence comprises at least a first, a second and a third micro-RNA (miRNA) target sequence, and wherein each of the at least a first, second and third the miRNA target sequences are optimised to hybridise with a corresponding miRNA sequence. The compositions and molecules provided are useful in therapies such as for the treatment of cancer, in immunotherapies, and in vaccines.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: March 19, 2024
    Assignee: Combined Therapeutics, Inc.
    Inventors: Romain Micol, Valerie Duval
  • Patent number: 11919927
    Abstract: Provided herein are engineered hMPV F proteins. In some aspects, the engineered F proteins exhibit enhanced conformational stability and/or antigenicity. Methods are also provided for use of the engineered F proteins as diagnostics, in screening platforms, and/or in vaccine compositions.
    Type: Grant
    Filed: April 6, 2023
    Date of Patent: March 5, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jason McLellan, Ching-Lin Hsieh, Scott Rush, Nianshuang Wang
  • Patent number: 11918640
    Abstract: Disclosed are methods of preparing an isolated population of human papillomavirus (HPV)-specific T cells comprise dividing an HPV-positive tumor sample into multiple fragments; separately culturing the multiple fragments; obtaining T cells from the cultured multiple fragments; testing the T cells for specific autologous HPV-positive tumor recognition; selecting the T cells that exhibit specific autologous HPV-positive tumor recognition; and expanding the number of selected T cells to produce a population of HPV-specific T cells for adoptive cell therapy. Related methods of treating or preventing cancer using the T cells are also disclosed.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: March 5, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Christian S. Hinrichs, Steven A. Rosenberg
  • Patent number: 11913032
    Abstract: The present disclosure relates to a method of in vitro engineering of nucleic acids. This disclosure further relates to in vitro engineering of viral genomes and to the improvement of viral properties by in vitro genomic engineering of viral genomes. Specifically, the disclosure relates to in vitro viral genomic digestion using RNA-guided Cas9, the assembly of a recombinant genome by the insertion of a DNA or RNA fragment into the digested viral genome and transformation of a host cell with the recombinant genome. This method also related to in vitro engineering for error correction of nucleic acids.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: February 27, 2024
    Assignee: C3J Therapeutics, Inc.
    Inventors: Kyle C. Cady, E. Magda Barbu, Christen G. DiPetrillo
  • Patent number: 11911467
    Abstract: The present disclosure relates to a composition comprising PIC for treatment of cancer. More particularly, the present disclosure discloses a composition for treatment of cancer comprising polyinosinic-polycytidylic acid, an antibiotic or polyamine compound, a positive ion, and optionally a virus, and the use thereof in manufacture of a medicament for treatment of cancer. No figure for publication.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: February 27, 2024
    Assignee: YISHENG BIOPHARMA (SINGAPORE) PTE LTD
    Inventor: Yi Zhang
  • Patent number: 11913073
    Abstract: This document provides methods and materials related to treating a disease. For example, this document provides methods for treating a subject's disease based on identifying the risk of progressive multifocal leukoencephalopathy PML using a genetic test.
    Type: Grant
    Filed: March 16, 2023
    Date of Patent: February 27, 2024
    Assignees: PML Screening, LLC, The Université Paris-Saclay, The Assistance Publique—Hôpitaux de Paris (APHP), The Institut National de la Santé et de la Recherche Médicale (INSERM)
    Inventors: Eli Hatchwell, Peggy S. Eis, Edward B. Smith, III, Yassine Taoufik
  • Patent number: 11911481
    Abstract: This invention provides for a RSV-targeted nanoparticle PMN (RTPMN), combining HR2D anti-fusion peptide, and plasmid encoded siRNA against RSV-NS1 and/or RSV-P gene as a safe, effective and inexpensive anti-RSV prophylaxis and/or therapy.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: February 27, 2024
    Assignees: UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS, UNIVERSITY OF SOUTH FLORIDA
    Inventors: Eleni Markoutsa, Subhra Mohapatra, Shyam Mohapatra
  • Patent number: 11891416
    Abstract: The present relation relates to recombinant vesicular stomatitis virus for use as prophylactic and therapeutic vaccines for infectious diseases of AIDS. The present invention encompasses the preparation and purification of immunogenic compositions which are formulated into the vaccines of the present invention.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: February 6, 2024
    Assignee: INTERNATIONAL AIDS VACCINE INITIATIVE, INC.
    Inventors: Christopher L. Parks, Ivo Lorenz, Sanjay K. Phogat, Timothy J. Zamb
  • Patent number: 11891668
    Abstract: Methods for producing engineered exosomes and other vesicle-like biological targets, including allowing a target vesicle-like structure to react and bind with immunomagnetic particles; capturing the immunomagnetic particle/vesicle complex by applying a magnetic field; further engineering the captured vesicles by surface modifying with additional active moieties or internally loading with active agents; and releasing the engineered vesicle-like structures, such as by photolytically cleaving a linkage between the particle and engineered vesicle-like structures, thereby releasing intact vesicle-like structures which can act as delivery vehicles for therapeutic treatments.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: February 6, 2024
    Assignees: The University of Kansas, Kansas State University Research Foundation
    Inventor: Mei He
  • Patent number: 11878054
    Abstract: The invention is directed to compositions and methods for the stabilization of viral and bacterial vaccines. Vaccines of the invention are contained in VLPs with stabilizing agents such as, for example, sugar alcohols (e.g., sorbitol) and degraded gelatins. Preferably the gelatin has an average molecular weight of 10,000 kilodaltons or less. These vaccines have a substantially improved thermostability as well as long term stability. The invention is also directed to the manufacture of a vaccine or the invention and methods for the administration of a vaccine of the invention to patients.
    Type: Grant
    Filed: August 9, 2020
    Date of Patent: January 23, 2024
    Assignee: Inventprise, Inc.
    Inventor: Subhash V. Kapre
  • Patent number: 11844830
    Abstract: Improved anti-HPV immunogens and nucleic acid molecules that encode them are disclosed. Immunogens disclosed include those having consensus HPV39 E6E7 and HPV45 E6E7. Pharmaceutical composition, recombinant vaccines comprising DNA plasmid and live attenuated vaccines are disclosed as well methods of inducing an immune response in an individual against HPV are disclosed.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: December 19, 2023
    Assignees: The Trustees of the University of Pennsylvania, Inovio Pharmaceuticals, Inc.
    Inventors: David Weiner, Jian Yan
  • Patent number: 11820795
    Abstract: The present invention provides recombinant adenoviral compositions and methods for their use in treating disorders associated with epithelial tissues.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: November 21, 2023
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Andre Lieber, Hongjie Wang
  • Patent number: 11819535
    Abstract: There is described herein methods of treating a disease associated with extracellular matrix (ECM) in a patient. In some cases, the methods comprise administering to the patient a therapeutically effective amount of fibroblasts which express CD36.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 21, 2023
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: Fei-Fei Liu, Xiao Zhao, Kenneth W. Yip
  • Patent number: 11813329
    Abstract: A method for treating or reducing the incidence of recurrence of cancer, benign tumors, or HPV-associated lesions, including skin cancer, and particularly squamous cell carcinoma (SCC and basal-cell carcinoma, by administering one or more doses of HPV recombinant vaccine to a patient.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: November 14, 2023
    Assignee: HPVVAX, LLC
    Inventors: Tim Ioannides, Evangelos V. Badiavas
  • Patent number: 11807676
    Abstract: The invention relates to MHC-Ia open conformers as immunomodulatory agents, particularly in the treatment or prevention of cancer. The open conformer comprises or consists of a first and a second monomer, and each monomer comprises a HLA-heavy chain from the MHC-Ia molecules. The open conformer further comprises a protein stabilizing polypeptide sequence and optionally an amino acid linker. Further aspects of the invention provide combination medicaments comprising the MHC-Ia open conformers and immune checkpoint inhibitors. Furthermore, the invention relates to the use of MHC-Ia open conformers as immunomodulators, particularly in diseases where the interaction to diverse immunoregulatory receptors such as KIR3DL1, KIR3DL2, KIR3DL3, LILRB1, LILRB2, and PTPRJ modulates an immune response, and in diseases were the negative modulation of Tregs is a therapeutic strategy, e.g. infectious diseases.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: November 7, 2023
    Assignees: UNIVERSITÄT ZÜRICH, UNIVERSITÄT BASEL
    Inventors: Osiris Marroquin Belaunzaran, Christoph Renner
  • Patent number: 11806432
    Abstract: Embodiments of the present invention provide for novel compositions and methods for making and using a thermally stable human papilloma virus (HPV) formulation or other stabilized multimeric virus formulation. Certain embodiments concern lyophilizing HPV formulations in the presence or absence of adjuvants. Other embodiments concern lypophilizing HPV capsomere vaccines in order to increase stability of an immunogenic composition against HPV infection for storage, delivery and use. In yet other embodiments, a single immunogenic composition can include a thermally stable formulation of multiple virus serotypes. Yet other embodiments disclosed herein concern multi-targeted antigen complexes lyophilized in formulations of use to prolong stability and/or enhance immunogenicity. Other embodiments concern exposing lyophilized multi-targeted antigen complexes to elevated temperatures to enhance immunogenicity of the antigens of the complex to multiple pathogens.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: November 7, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE
    Inventors: Theodore Randolph, Robert Garcea