Patents Examined by Nicole Kinsey White
  • Patent number: 11735301
    Abstract: A vaccine candidate is herein described comprised by statistically significant DNA fragments related to Civet SARS, Bat Sars, and BtRs BetaCov, BtRI BetaCov, and Neoromicia resulting in three types of compositions: 1) a composition of statistically significant DNA fragments, 2) a composition of RNA transcripts corresponding to the statistically significant DNA fragments, and 3) a computational reduction composition wherein the DNA fragments are fully or partially subtracted from a base organism, resulting in a synthetic organism which has a high statistical likelihood of problematic functions being partially or fully removed.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: August 22, 2023
    Inventor: Matthew Vernon Hanson
  • Patent number: 11702461
    Abstract: The present disclosure provides T-cell modulatory multimeric polypeptides that comprise an immunomodulatory polypeptide that exhibits reduced binding affinity to a cognate co-immunomodulatory polypeptide. A T-cell modulatory multimeric polypeptide is useful for modulating the activity of a T cell, and for modulating an immune response in an individual.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: July 18, 2023
    Assignee: Cue Biopharma, Inc.
    Inventors: Ronald D. Seidel, III, Rodolfo J. Chaparro
  • Patent number: 11702675
    Abstract: This disclosure provides replication-incompetent adenoviral vectors useful in vaccine development and gene therapy. The disclosed vectors comprise a selective deletion of E3 and are particularly useful for preparation of vaccines development and for gene therapy using toxic transgene products that result in vector instability that occurs when the entire E3 domain is deleted.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: July 18, 2023
    Assignee: The Wistar Institute
    Inventors: Hildegund C. J. Ertl, Xiang Yang Zhou
  • Patent number: 11702676
    Abstract: The present invention provides a polyploid adeno-associated virus (AAV) capsid, wherein the capsid comprises capsid protein VP1, wherein said capsid protein VP1 is from one or more than one first AAV serotype, wherein said capsid protein VP2 is from one or more than one first AAV serotype and capsid protein VP3, wherein said capsid protein VP3 is from one or more than one second AAV serotype and wherein at least one of said first AAV serotype is different from at least one of said second AAV serotype and is different from at least one of said third AAV serotype, in any combination.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: July 18, 2023
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Chengwen Li, Richard Jude Samulski
  • Patent number: 11690885
    Abstract: The present invention relates to bacteriophage therapy. More particularly, the present invention relates to novel bacteriophages having a high specificity against Staphylococcus aureus strains, their manufacture, components thereof, compositions comprising the same and the uses thereof in phage therapy and as companion diagnostic.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: July 4, 2023
    Assignee: PHERECYDES PHARMA
    Inventors: Cindy Fevre, Hélène Blois, Mathieu Medina
  • Patent number: 11686729
    Abstract: The present disclosure includes methods and systems of detecting bacteria in a sample using phage-functionalized sensors, methods of enriching a sample with phage-functionalized magnetic particles, phage-functionalized magnetic particles and methods of making phage-functionalized magnetic particles.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: June 27, 2023
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: Ramaraja P. Ramasamy, Yan Zhou
  • Patent number: 11655461
    Abstract: Disclosed herein are methods and exemplary compositions associated with antigen purification, exemplary aspects of which may include harvesting viral and antigenic substances from source organisms; and a purification platform comprising chemical separation and size-difference separation for the removal of contaminants, debris and impurities from the viral and protein (e.g. antigenic, including influenza hemagglutinin antigens) substances, as well as their concentration and collection.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: May 23, 2023
    Assignee: KBIO HOLDINGS LIMITED
    Inventors: Steven D. Hume, Leigh Burden, Joshua Morton, Greg Pogue, Barry Bratcher, Hugh A. Haydon, Carrie A. Simpson, Nick Partain, John W. Shepherd, Kelsi Swope
  • Patent number: 11655471
    Abstract: Disclosed are compositions and methods for increasing virus production. In particular, disclosed herein are cell or cell line comprises reduced expression of one or more cellular genes selected from the group comprising COQ9, FGF2, NAT9, NDUFA9, NEU2, PLA2G1B, PYCR1, RAD51AP1, STRADA, SVOPL, and/or ZFYVE9 for use in increasing viral production.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: May 23, 2023
    Assignee: University of Georgia Research Foundation, Inc.
    Inventor: Ralph A Tripp
  • Patent number: 11655285
    Abstract: The present invention provides novel anti-HIV antibodies with improved therapeutic properties, related pharmaceutical compositions, and methods of use thereof.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: May 23, 2023
    Assignee: Gilead Sciences, Inc.
    Inventors: Mini Balakrishnan, Brian A. Carr, John Corbin, Craig S. Pace, Nathan D. Thomsen, Xue Zhang
  • Patent number: 11642422
    Abstract: The present disclosure provides polynucleotide cassettes, expression vectors and methods for the expression of a gene in mammalian cells to provide gene therapy for pyruvate kinase deficiency.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: May 9, 2023
    Assignees: Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, O.A, M.P., Fundación Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Consorcio Centro de Investigación Biomédica en Red, M.P.
    Inventors: Jose Carlos Segovia, Maria G. Gomez, Susana Navarro, Nestor Meza, Juan Antonio Bueren, Maria G. Bravo
  • Patent number: 11640851
    Abstract: A vaccine candidate is herein described comprised by statistically significant DNA fragments resulting in three types of compositions: 1) a composition of statistically significant DNA fragments, 2) a composition of RNA transcripts corresponding to the statistically significant DNA fragments, and 3) a computational reduction composition wherein the DNA fragments are fully or partially subtracted from a base organism, resulting in a synthetic organism which has a high statistical likelihood of problematic functions being partially or fully removed.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: May 2, 2023
    Inventor: Matthew Vernon Hanson
  • Patent number: 11635434
    Abstract: Methods for determination of risk, previous history and/or presence of a betaretrovirus infection in a subject are described herein. Said methods may comprise incubating a biological sample from the subject, the biological sample comprising immune effector-producing cells, with one or more betaretrovirus-specific epitopes, the betaretrovirus-specific epitopes comprising at least 7 contiguous amino acids according to any one of SEQ ID Nos. 1-36, and measuring the production of immune effectors by the immune effector-producing cells, wherein production of the immune effectors by the immune effector-producing cells determines risk and/or presence of betaretrovirus infection in the subject. Isolated peptides and kits for carrying out the methods are also described.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: April 25, 2023
    Inventors: Andrew L. Mason, Mandana Rahbari, Guangzhi Zhang
  • Patent number: 11633471
    Abstract: An immunogen generally includes a virus-like particle and an antigen linked to the virus-like particle. The antigen includes an antigenic portion of a polypeptide, wherein the polypeptide inhibits lipoprotein lipase (LPL) activity by binding to LPL. In some embodiments, the polypeptide is at least a portion of angiopoietin-like 3 (ANGPTL3). In other embodiments, the polypeptide is at least a portion of angiopoietin-like 4 (ANGPTL4). In other embodiments, the polypeptide at least a portion of angiopoietin-like 8 (ANGPTL8). In some embodiments, the virus-like particle is a Qbeta immunogenic carrier. In some of these embodiments, the antigen is linked to the virus-like particle through a Gly-Gly-Gly-Cys linker at the C-terminal of the antigen.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: April 25, 2023
    Assignees: UNM Rainforest Innovations, The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Bryce Chackerian, Alan Remaley, Marcelo Amar, Alexandra Fowler
  • Patent number: 11624051
    Abstract: A composition or matrix comprising a bacteriophage and nanofibrillar cellulose or a derivative thereof in a wet or dry state is disclosed.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: April 11, 2023
    Assignee: UPM-KYMMENE CORPORATION
    Inventors: Mikael Skurnik, Saija Kiljunen, Sheetal Patpatia, Markus Nuopponen, Lauri Paasonen
  • Patent number: 11618780
    Abstract: Provided are compositions and methods for activating latent Human Immunodeficiency Virus (HIV). The compositions and methods may utilize a recombinant peptide that has a DNA binding zinc finger domain specific to the HIV long terminal repeat (LTR) sequence. The recombinant peptide may also have a transcription factor (e.g. a transcription activator) that is conjugated to the zinc finger domain. Also provided are methods of treating HIV in a subject in need of the treatment. The method may involve activation of latent HIV in cells of the subject and selectively removing such cells from the subject, providing complete and effective treatment of HIV.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: April 4, 2023
    Assignee: CITY OF HOPE
    Inventors: Kevin V. Morris, Marc S. Weinberg, Tristan Scott, Daniel Lazar
  • Patent number: 11613562
    Abstract: The multi-epitope SARS-COV2 Spike peptides are analyzed for their ability to form association or binding complex with HLA-DR1 and human TLR8 by using computer modeling and molecular docking experiments. These peptides are identified as candidates for vaccine development as well as antibody-based immunotherapy.
    Type: Grant
    Filed: June 13, 2021
    Date of Patent: March 28, 2023
    Inventor: Subhajit Dasgupta
  • Patent number: 11607449
    Abstract: A synthetic DNA vaccine against SARS-CoV-2 infection comprises a codon-optimized coding sequence for optimal mammalian expression of a pSARS2 spike glycoprotein (pSARS2-S). The signal peptide may be replaced with the signal peptide from the human IgG2 heavy chain. Systemic S1-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in mice at 2 weeks-post three injections with 100 ?g of the pSARS2-S vaccine via intramuscular (IM) needle injection. IM immunization induced Th1-skewed and long-lasting IgG response in BALB/c mice. Immunogenicity and induction of nAbs were enhanced with a needle-free delivery system, wherein two doses were sufficient to elicit significant levels of systemic S1-specific IgG antibodies and nAbs via IM or intradermal immunization.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: March 21, 2023
    Assignee: King Abdulaziz University
    Inventors: Anwar M. Hashem, Mohamed A. Alfaleh, Turki S. Abujamel, Sawsan S. Alamri, Abdullah Algaissi, Khalid A. Alluhaybi
  • Patent number: 11603542
    Abstract: The present invention relates to adeno-associated viral (AAV) particles encoding siRNA molecules and methods for treating amyotrophic lateral sclerosis (ALS).
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: March 14, 2023
    Assignee: Voyager Therapeutics, Inc.
    Inventors: Dinah Wen-Yee Sah, Qingmin Chen, Jinzhao Hou
  • Patent number: 11596660
    Abstract: The present invention provides methods for treating an individual having bladder cancer comprising intravesically administering to the individual an oncolytic virus. Also provided are pharmaceutical compositions and kits for treating bladder cancer.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: March 7, 2023
    Assignee: CG ONCOLOGY, INC.
    Inventor: Arthur Kuan
  • Patent number: 11596680
    Abstract: A dry powder norovirus vaccine is provided, which comprises at least two norovirus antigens representing different genogroups. The vaccine may be produced by formulation with a mixture of different antigens or combination of monovalent powders with each containing one antigen. The formulated vaccine is suitable for mucosal administration and soluble in aqueous solutions for parenteral administration. A method of immunization is also provided, which comprises at least one administration of the vaccine via mucosal and/or parental route. The immunization may have multiple administrations of the vaccine, i.e., one or more immunizations via a mucosal route followed by one or more immunizations via a parenteral route or vice versa, to maximize both mucosal and systemic immune responses and protection against norovirus infections.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: March 7, 2023
    Assignee: RESILIENCE GOVERNMENT SERVICES, INC.
    Inventors: Ron Cobb, Michael Springer, Yawei Ni