Abstract: Disclosed herein is a method for determining elastic properties of a test body by the use of tensile or compressive loading in a test stand, wherein a centroid line is defined for a longitudinal axis for the test body, centroid line miming through elastic centers of gravity of infinitesimally thick discs which lie orthogonally to the longitudinal axis and into which the test body can be divided. The test body is clamped at two clamping points by clamping devices, and a force is introduced at, at least one of the two clamping points in the direction of the respective other clamping point such that a line of action of a force introduced at, at least one of the clamping points is substantially parallel to a connection line between the two clamping points. Furthermore, by providing additional material or springs to the test body, the center of gravity line of the test body is converted into a modified centroid line of the entire system consisting of the test body and additional material or springs).
Type:
Grant
Filed:
November 2, 2018
Date of Patent:
August 29, 2023
Assignee:
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Abstract: A space seeker motion test system comprises a rough vacuum chamber including a space seeker holding fixture, a space chamber including a target to be imaged by a space seeker disposed in the space seeker holding fixture, a bellows coupling the space seeker holding fixture to the space chamber, a gate valve providing selective fluidic communication between the space seeker holding fixture and an internal volume of the space chamber through the bellows, a first vacuum pump configured to maintain the rough vacuum chamber at a rough vacuum, and a second vacuum pump configured to maintain the space chamber at high vacuum.
Abstract: In an electrostatic capacity sensor 1, first electrodes 11a to 11d are provided on a substrate 10, and an electrode support 14 has dielectric properties and elasticity and is fixed to the substrate 10. A second electrode 12 is provided in the electrode support 14 so as to face the first electrodes 11a to 11d with a distance from the first electrodes 11a to 11d. The electrostatic capacity sensor has improved durability.
Type:
Grant
Filed:
January 20, 2022
Date of Patent:
August 29, 2023
Assignees:
Honda Motor Co., Ltd., The University of British Columbia
Inventors:
Ryusuke Ishizaki, Mirza Saquib Sarwar, John D. W. Madden
Abstract: A tire wear detection apparatus for a vehicle includes a tire side apparatus and a vehicle body side system. In response to a wet road surface being detected, from a vibration waveform of a tire indicated by a detection signal according to a magnitude of a vibration of the tire, the tire side apparatus is configured to (i) acquire a peak level value of a vibration level at a stepping time at which an apparatus corresponding position in the tire corresponding to an arranged position of the tire side apparatus starts to contact the road surface, and/or (ii) calculate a level value of the vibration level in a post-kicking range after the apparatus corresponding position kicks to separate from the road surface, so as to generate a wear data indicating a wear state of the tire.
Abstract: A system that monitors toilets for leaks using in-toilet monitors with pressure sensors that are placed underwater in toilet tanks. Monitors can be dropped into tanks without additional wiring or installation; they may be battery powered and may transmit data wirelessly. Data may be analyzed by a server that detects leaks or other malfunctions. Pressure data may be filtered to remove the effect of barometric pressure, to measure the height of water in the tank. The system may learn the flush pressure change pattern for each toilet; pressure changes that do not match this pattern may indicate problems such as leaks. Data may indicate the type of leak, such as an open flapper or a leaking valve. Toilet monitors may measure temperature, and the system may generate alerts when freezing appears imminent. The system may keep flush counts for each toilet to support maintenance and water consumption measurement.
Type:
Grant
Filed:
March 22, 2023
Date of Patent:
August 22, 2023
Assignee:
ANACOVE, LLC
Inventors:
Ian Amihay Lerner, Alistair Ian Chatwin, Roswell Reid Roberts, III, Carlos Shteremberg
Abstract: An electrostatic capacitance detection device is provided, which is provided with a first electrode, an insulating layer on the first electrode, and a second electrode on the insulating layer, the electrostatic capacitance detection device being configured to calculate a shear force applied from above an upper portion of the second electrode.
Abstract: Various embodiments of a pressure sensor assembly and an implantable medical device that includes such assembly are disclosed. The assembly includes a substrate having a via that extends through the substrate along a via axis between a first major surface and a second major surface of the substrate, a membrane disposed on the first major surface of the substrate and over the via, and a patterned metal layer disposed on a first major surface of the membrane, a portion of such layer including a first capacitor plate. The assembly further includes an integrated circuit disposed adjacent to the first major surface of the membrane and electrically connected to the metal layer. The integrated circuit includes a second capacitor plate disposed on or within a substrate of the integrated circuit. The first capacitor plate and the second capacitor plate form a variable capacitor disposed along the via axis.
Type:
Grant
Filed:
January 10, 2022
Date of Patent:
August 15, 2023
Assignee:
Medtronic, Inc.
Inventors:
Andreas Fenner, David A. Ruben, Andrew J. Ries, Chetan Patel
Abstract: Systems and methods for measuring torque on a drive train component of a rotating drive system are disclosed. In some aspects, a system includes a target assembly, a sensor assembly, and a sensor processing unit. The sensor assembly is located proximate to the target assembly, and the sensor assembly includes sensors mounted radially around the shaft and configured to detect sensor targets as the target assembly rotates with the drive train component. The sensor processing unit is configured for receiving sensor signals from the sensor assembly and outputting a torque signal based on the sensor signals. The sensor processing unit is configured for receiving target calibration data for the target assembly and sensor calibration data for the sensor assembly. The sensor processing unit is configured for verifying that the target calibration data corresponds to the target assembly and that the sensor calibration data corresponds to the sensor assembly.
Type:
Grant
Filed:
August 14, 2019
Date of Patent:
August 15, 2023
Assignee:
LORD Corporation
Inventors:
Russell Altieri, Daniel Kakaley, Charles Clifton, Warren Brannan, Mark Jolly, Sanjeev Sachan
Abstract: A sensing device including a first stator tooth with a plurality of first teeth, a second stator tooth with a plurality of second teeth, in which the first tooth overlaps the second tooth in a radial direction from a center of the stator, and a first angle formed between two ends of a first pole of a magnet based on the center of the stator is the same as a second angle formed between two ends of the first tooth based on the center of the stator.
Abstract: A system comprises a member to receive a mechanical force, and a sensor to sense the mechanical force. The sensor is mounted on the member using a set of nanoparticles and a set of nanowires coupled to the set of nanoparticles.
Type:
Grant
Filed:
April 8, 2020
Date of Patent:
August 1, 2023
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Ralf Jakobskrueger Muenster, Sreenivasan Kalyani Koduri, Benjamin Stassen Cook
Abstract: The present invention is a row cleaning device having a main body with a proximal end and a distal end, the main body proximal end is adapted to mount to a seeder. A pivot leg has a first end and a second end, the first end is pivotally mounted to the main body distal end at a pivot, the second end extends toward the main body proximal end. A clearing implement is mounted to the pivot leg second end and rotates with respect to the pivot leg. The row cleaning device is adapted to be driven by a seeder in a direction of travel with the clearing implement being located behind the pivot in the direction of travel. The pivot leg pivots with respect to the main body as the clearing implement moves along the ground in the direction of travel.
Abstract: A rotation operation detection mechanism that includes a housing, an operation surface disposed on a first main surface of the housing, operation units formed integrally with the housing and protruding on the operation surface side, and a sensor that detects a stress generated in the housing when the operation units are rotated.
Abstract: Pressure sensors are configured for accurate, non-position sensitive pressure measurement. They can offer microprocessor-based features for optimized measurement, control, and signaling using precision-calibrated silicon piezoresistive microelectromechanical (MEMS) sensors provisioned within a durable, versatilely mountable housing. Such sensors can be mounted readily in alternate locations, configurations, and/or positions. They can also offer real-time temperature compensation, enable selectable analog outputs (such as 2-wire mA, 3-wire mA, or 3-wire V signals), enable adjustable range or subrange selection, support uni- or bi-directional settings, and allow local (pushbutton) or remote (via dry contacts) zeroing for accuracy.
Abstract: A kingpin assembly includes a housing having a recess located therein, a kingpin having at least a portion located within the recess of the housing, wherein the kingpin is secured within the recess of the housing, and wherein the kingpin includes an axis extending along a length of the kingpin, and a sensor arrangement configured to sense a force exerted on the kingpin in a first direction that is substantially perpendicular to the longitudinal axis.
Type:
Grant
Filed:
January 17, 2019
Date of Patent:
July 18, 2023
Assignee:
SAF-Holland, Inc.
Inventors:
Randy L. Schutt, Ahmad Nizam Mohamad Jembari, Gerald Hungerink
Abstract: A pressure transmitter is mounted to the sampling output of a sampling meter resetter. The pressure transmitter and the sampling meter resetter are mounted in a subterranean meter box. In embodiments, the pressure transmitter is removably mounted to a spring-loaded sampling valve.
Abstract: A soft sensor includes an elastic sheet, which includes a first elastic layer and a second elastic layer facing each other, and a sensor unit formed by printing a predetermined conductive liquid metal between the first elastic layer and the second elastic layer. A hand-wearable device may include at least one soft sensor, wherein the hand-wearable device has a shape corresponding to at least a portion of a shape of a hand, and the soft sensor is located at a position corresponding to at least some joints of the hand.
Type:
Grant
Filed:
December 6, 2018
Date of Patent:
July 4, 2023
Assignee:
FEEL THE SAME, INC.
Inventors:
Joon Bum Bae, Su In Kim, Woo Keun Park, Da Hee Jeong, Jin Hyeok Oh
Abstract: Embodiments included herein are directed towards a method for estimating tire load. Embodiments may include determining a tire pressure associated with a tire and determining a tire angular velocity associated with the tire. Embodiments may further include obtaining one or more tire stiffness coefficients and determining a tire radial deformation based upon, at least in part, a length of a tire ground contact patch or a contact patch angle.
Abstract: A method of controlling a force sensor system to define at least one button implemented by at least one force sensor, the method comprising: receiving a force sensor input; determining a gradient of the force sensor input; and controlling the force sensor system based on the determined gradient.
Abstract: A torque sensor can be configured to detect the positions of rotor targets relative to the position of respective receiver structures. A torque sensor can include an oscillator circuit coupled to an excitation coil. The oscillator circuit can be configured to generate a periodic voltage signal and energize the excitation coil with the periodic voltage signal. The inductive torque sensor can include a stator circuit board including receivers with receiver structures that are periodically repeated. The inductive torque sensor can include rotor targets coupled to respective rotors, the rotor targets can be configured to affect the strength of the inductive coupling between the excitation coil and the respective receivers. The inductive torque sensor can include processing circuitry configured to provide signals associated with positions of the rotor targets relative to their respective receiver structures.
Abstract: A silicon carbide-based micro-electro-mechanical system (MEMS) combined temperature-pressure sensor chip and a preparation thereof. The chip includes a peripheric pressure-measuring unit and a center temperature-measuring unit. The pressure-measuring unit includes a silicon carbide substrate with a raised island and a pressure sensitive diaphragm formed by etching the back of the substrate. The raised island and the pressure-sensitive diaphragm constitute a membrane-island structure. Four piezoresistive strips are arranged symmetrically along a circumferential direction of a root of the pressure-sensitive diaphragm and between the raised island and the pressure-sensitive diaphragm. The temperature-measuring unit includes the raised island and a thin-film thermocouple arranged thereon.