Patents Examined by Olatunji Godo
  • Patent number: 10615386
    Abstract: The present disclosure provides a tray for storing battery cells, in which a plurality of storage plates having at least one battery cell stored therein are loaded by being stacked in one direction, the tray including a pressing device configured to press one end portion or both end portions of the storage plates with respect to a direction in which the storage plates are stacked in the tray so that the battery cells are stored in the storage plate without clearance from the storage plate.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: April 7, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Gi Man Kim, Ho Il Lee, Hyoung Sik Choi
  • Patent number: 10608222
    Abstract: A battery pack includes a battery assembly including a grouping of battery cells and an integrated module attached to the grouping of battery cells. The integrated module includes an upper section housing at least one electronics component and a lower section establishing a vent chamber.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: March 31, 2020
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Kevin A. Montgomery, Benjamin A. Tabatowski-Bush, Robert Bolduc, Hari Krishna Addanki, Jeffrey Matthew Haag
  • Patent number: 10601033
    Abstract: A high-capacity and a high-performance rechargeable battery is provided by forming a rechargeable battery stack that includes a spalled material structure that includes a spalled cathode material layer that has at least one textured surface and a stressor layer that has at least one textured surface. The stressor layer serves as a cathode current collector of the rechargeable battery stack. The at least one textured surface of the spalled cathode material layer forms a large interface area between the cathode and electrolyte which is formed above the spalled cathode material layer. The large interface area between the cathode and the electrolyte reduces interface resistance within the rechargeable battery stack.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yun Seog Lee, Stephen W. Bedell, Joel P. de Souza, Devendra K. Sadana
  • Patent number: 10601018
    Abstract: Provided is an electrode lead for a secondary battery that is less susceptible to cracks and has improved insulation, and a pouch type secondary battery and a battery module comprising the same. The electrode lead for a secondary battery according to the present disclosure is an electrode lead electrically connected to an electrode assembly, and the electrode lead includes a flat metal conductor and a coverlay type insulating film having an exposed shape at an electrically connected part of the metal conductor.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: March 24, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Jae-Uk Ryu, Jeong-O Mun, Dal-Mo Kang, Su-Chang Kim, Ji-Su Yoon
  • Patent number: 10601012
    Abstract: A multi-layered battery separator for a lithium secondary battery includes a first layer of a dry processed membrane bonded to a second layer of a wet processed membrane. The first layer may be made of a polypropylene based resin. The second layer may be made of a polyethylene based resin. The separator may have more than two layers. The separator may have a ratio of TD/MD tensile strength in the range of about 1.5-3.0. The separator may have a thickness of about 35.0 microns or less. The separator may have a puncture strength of greater than about 630 gf. The separator may have a dielectric breakdown of at least about 2000V.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: March 24, 2020
    Assignee: Celgard, LLC
    Inventors: Lie Shi, Jill V. Watson, Ronald W. Call, Ronnie E. Smith
  • Patent number: 10593984
    Abstract: The present invention has an object to provide (i) a nonaqueous electrolyte secondary battery separator having excellent ion permeability and (ii) an insulating porous layer by which to achieve the nonaqueous electrolyte secondary battery separator. The insulating porous layer is a nonaqueous electrolyte secondary battery insulating porous layer containing: a resin A; and a resin B, the resin A and the resin B having therebetween a Hansen solubility parameter distance (HSP distance) (Ra) of not more than 10 MPa1/2.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: March 17, 2020
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Hiroki Hashiwaki, Junji Suzuki, Syuichi Nakamoto
  • Patent number: 10594008
    Abstract: An air-metal battery utilizes a magnesium anode, a carbon cathode, and a conductive fluid including glycol and water. The anode and cathode are provided in a fuel card assembly that is replaceable as a unit.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: March 17, 2020
    Inventor: Dan Curfew
  • Patent number: 10593992
    Abstract: Provided are: a potassium ion secondary battery which is not susceptible to deterioration of charge/discharge capacity even if charging and discharging are repeated, and which has a long service life as a secondary battery; a potassium ion capacitor; a negative electrode for the potassium ion secondary battery; and a negative electrode for the potassium ion capacitor. A negative electrode for potassium ion secondary batteries and a negative electrode for potassium ion capacitors, each of which contains a carbon material that is capable of absorbing and desorbing potassium and a binder that contains a polycarboxylic acid and/or a salt thereof. A potassium ion secondary battery which is provided with the negative electrode or the capacitor. A binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors, which contains a polycarboxylic acid and/or a salt thereof.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: March 17, 2020
    Assignee: TOKYO UNIVERSITY OF SCIENCE FOUNDATION
    Inventors: Shinichi Komaba, Kei Kubota, Mouad Dahbi, Tatsuya Hasegawa
  • Patent number: 10586978
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: March 10, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Soichiro Kawakami, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Patent number: 10587016
    Abstract: The present invention relates to a system and a method of detecting swelling of a battery cell, which, when abnormal swelling is generated in a battery cell embedded in a battery pack, rapidly detect the abnormal swelling and control a supply of a power source to the battery pack to be blocked, thereby preventing a structural deformation of the battery cell and the battery pack and life shortening of the battery, and preventing an accident, such as ignition and explosion.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: March 10, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Jae-Chan Lee, Sooryoung Kim, Cheoltaek Kim
  • Patent number: 10581043
    Abstract: A portable electrical energy storage device is provided with a frame that includes a plurality of receptacles for receiving a portion of a portable electrical energy storage cell. A cap is provided over the plurality of receptacles and the portion of the portable electrical energy storage cells received in the frame. In some embodiments, a passageway extends between adjacent receptacles. Disposed within the passageway is a plug which exhibits more resistance to thermal energy migration than other portions of the frame that define the adjacent receptacles.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: March 3, 2020
    Assignee: Gogoro Inc.
    Inventors: Tai-Tsun Liu, Po-Chang Yeh
  • Patent number: 10573884
    Abstract: Various embodiments of the present disclosure describe energy storage devices. In one example, an energy storage device includes an anode having a plurality of active material particles, a cathode having a transition metal oxide material, and an electrolyte including a room temperature ionic liquid to couple the anode to the cathode. Each of the plurality of anode active material particles have a particle size of between about one micrometer and about fifty micrometers. One or more of the plurality of anode active material particles are enclosed by and in contact with a membrane coating permeable to lithium ions.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: February 25, 2020
    Assignee: Regents Of The University Of Colorado, A Body Corporate
    Inventors: Se-Hee Lee, Daniela Molina Piper, Tyler Evans
  • Patent number: 10573868
    Abstract: The present invention describes a method for coating porous separator films of lithium batteries and a coated separator film produced as a result of the respective manufacturing method. Laser ablation is used in the method for detaching particles from the target, and the particle flux vaporised by laser pulses is directed to the base material to be coated, to which the material is attached. The so-called roll-to-roll principle can be used in the method, in which the base material to be coated is directed from one roll to a second roll, and the coating occurs in the area between these rolls. In addition, rotating mirrors and a telecentric lens can be used for aligning the laser pulses as a rectilinear pulse front before guiding onto the target material.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: February 25, 2020
    Assignee: Pulsedeon Oy
    Inventors: Jari Liimatainen, Ville Kekkonen, Aleksey Zolotukhin
  • Patent number: 10566607
    Abstract: A negative electrode active material including: a particle of negative electrode active material containing silicon-based material of SiOx (0.5?x?1.6); wherein the intensity A of a peak in a Si-region given in the chemical shift region of from ?50 to ?95 ppm and the intensity B of a peak in a SiO2-region given in the chemical shift region of from ?96 to ?150 ppm in a 29Si-MAS-NMR spectrum of the silicon-based material satisfy a relationship that A/B?0.8. This provides a negative electrode active material which can increase a battery capacity, and can improve cycle characteristics and initial charge/discharge characteristics when used as a negative electrode active material for a lithium ion secondary battery.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: February 18, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Takakazu Hirose, Hiromichi Kamo, Hiroki Yoshikawa
  • Patent number: 10566581
    Abstract: Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 18, 2020
    Assignee: 24M Technologies, Inc.
    Inventors: Ricardo Bazzarella, Alexander H. Slocum, Tristan Doherty, James C. Cross, III
  • Patent number: 10566668
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (a) a pseudocapacitance-like cathode comprising a cathode active material that contains both graphene sheets and a porphyrin compound, including porphyrin or a porphyrin complex, wherein the porphyrin compound is bonded to or supported by primary surfaces of graphene sheets to form a redox pair for pseudocapacitance; (b) a battery-like anode comprising an anode active material selected from sodium metal, a sodium metal alloy, a sodium intercalation compound, a sodium-containing compound, or a combination thereof, and (c) a sodium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: February 18, 2020
  • Patent number: 10566588
    Abstract: An exemplary support assembly for a battery array includes, among other things, a frame and an insert secured to the frame. The insert is configured to hold at least one battery cell within the frame. The frame is made of a first material and the insert is made of a second material that is softer than the first material. An exemplary method of securing a battery cell within a traction battery pack of an electrified vehicle includes, among other things, compressing an insert against the at least one battery cell. The insert is secured to a frame made of a first material. The insert is made of a second material that is softer than the first material.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: February 18, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Rajaram Subramanian, Bhaskara Boddakayala, Saravanan Paramasivam, Steve Droste, Enrique Rivera
  • Patent number: 10559796
    Abstract: The disclosure relates to a battery carrier for accommodating at least one electric battery module in a vehicle. The battery carrier may include at least one first wall, at least one second wall arranged at an angle with respect to the first wall, wherein the second wall is joined to the first wall by a joining region, wherein an adhesive region is formed in the joining region, and the adhesive region is configured to condition the joining region for a materially bonded connection to a seal, and at least one seal materially bonded to the adhesive region in order to fluidically seal the joining region.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: February 11, 2020
    Assignee: Benteler Automobiltechnik GmbH
    Inventors: Thomas Olfermann, Christian Handing
  • Patent number: 10559792
    Abstract: A structurally-integrated battery pack may comprise an outer skin, an inner skin, structural foam, battery cells, and/or other components. Structural foam may be disposed between the outer skin and the inner skin. The structural foam may include battery voids and/or one or more cooling channels. Battery cells may be disposed within the battery voids. The battery cells within the battery voids and the structural foam may form layers. The layers may comprise a first layer including a first structural foam layer, a second layer including a first battery disposed within a first battery void, a third layer including at least a partial structural foam layer, and/or other layers. The partial structural foam layer may at least partially form a cooling channel. The outer skin, the inner skin, the structural foam, and/or the battery cells may be incorporated into a structural or non-structural element of an aircraft and/or vehicle.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: February 11, 2020
    Assignee: Ampaire, Inc.
    Inventor: Cory Michael Combs
  • Patent number: 10553840
    Abstract: A manufacturing method of manufacturing a battery pack that includes: a cell group obtained by stacking unit cells in a stacking direction, and a bus bar electrically connecting the unit cells. Each of the unit cells has a cell body, an electrode tab and a spacer. The electrode tabs protrude out from the cell bodies, and are supported by the spacers. The method includes positioning joining portions of the electrode tabs to the bus bar at predetermined positions in a movement direction of the spacers by moving the spacers in one direction in a state in which the unit cells and the spacers are stacked, before the bus bar is joined to the electrode tabs. In addition, the method includes joining the bus bar to the electrode tabs in a state in which the joining portions of the electrode tabs are positioned at the predetermined positions.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: February 4, 2020
    Assignee: Envision AESC Japan Ltd.
    Inventors: Shoutaro Ishimaru, Yuta Motohashi