Abstract: An optical signal quality monitor includes a splitter splitting an input optical signal into two signals; a low-frequency converter converting one split optical signal to a low frequency signal by modulating the optical signal with a frequency offset signal; and an intensity ratio calculator calculating an intensity ratio between the low frequency signal and the other split optical signal, thereby appropriately confirming the quality of a high-bit rate optical signal. The monitor includes plural processing lines, each line including the splitter, the low-frequency converter, and the intensity ratio calculator. At least one line includes an optical noise superimposer superimposing optical noise on the one split signal before inputted to the converter or an optical band-pass filter transmitting the one split signal before inputted to the converter. The monitor includes a polarization state changer changing the polarization state of the input signal before inputted to the splitter.
Abstract: For conventional cipher communications based on the principles of quantum mechanics, the photon number per signal needs to be controlled below 1 or to a mesoscopic level in order to make quantum-mechanical properties remarkable. This invention is intended to provide a quantum-mechanical communications' method that is practical even with a macroscopic number of photons. Antisqueezed light is transmitted using a random sender basis. The legitimate recipient can use a secret key to know the random sender basis, and thus to receive the information accurately without being affected by antisqueezing. However, because eavesdroppers unknowing of the sender basis must use haphazard bases in an attempt to receive the signals, the eavesdroppers are significantly affected by antisqueezing and the respective signal bit-error-rates are increased. This makes eavesdropping impossible, thus ensuring secure communications between the legitimate senders and recipients.