Abstract: An embodiment includes a housing including a guide protrusion projecting from an upper surface thereof and a guide groove formed adjacent to the guide protrusion, a first magnet disposed at the housing, a bobbin on which a lens is mounted, a first coil disposed on an outer circumferential surface of the bobbin to move the bobbin by interaction with the first magnet, an upper elastic member coupled to the bobbin and the housing and having an end disposed in the guide groove, a damping member disposed between a side surface of the guide protrusion and a first end of the upper elastic member disposed in the guide groove, and a second coil for moving the housing by interaction with the first magnet.
Abstract: [Problem] To provide a solid-state imaging device enabling summed-readout mode and cyclic-readout mode. [Solution] A device includes virtual-pixel units implemented by pixels of transfer-route controlling-scheme, the virtual-pixel units having a shape of polygon, the polygons are tessellated. The virtual-pixel unit encompasses a photoelectric-conversion region, charge detectors to which ordinal numbers are labeled, configured to accumulate signal charges transferred from the photoelectric-conversion region, and transfer-control elements configured to control movement of signal charges from the photoelectric-conversion region to one of the charge detectors. N pieces of charge detectors of the same ordinal number are arranged in boundary between the photodiodes and the intersection-shared sites.
Abstract: A lens device includes a first lens module, an image sensor and a first light path turning module. The first lens module includes plurality of lenses. The first light path turning module is configured to transmit a light beam passing through the first lens module to the image sensor by exactly three or four reflections. The first light path turning module includes three or four reflecting surfaces on which the reflections occur. All the reflecting surfaces are plane surfaces. The first light path turning module includes no free form surface. All the surfaces on which the light beam is reflected are plane surfaces, wherein the plane surfaces are flat and are different from freeform surfaces.
Type:
Grant
Filed:
October 28, 2022
Date of Patent:
January 2, 2024
Assignees:
SINTAI OPTICAL (SHENZHEN) CO., LTD., ASIA OPTICAL CO., INC.
Abstract: To stably generate avalanche amplification while suppressing a reduction in resolution. A solid-state imaging device according to an embodiment includes a photoelectric conversion region in an element region defined by a trench in a semiconductor substrate, a first semiconductor region surrounding the photoelectric conversion region, a first contact that contacts the first semiconductor region at a bottom of the trench, a second semiconductor region contacting the first semiconductor region and having a first conductivity type the same as the first semiconductor region, a third semiconductor region that contacts the second semiconductor region, between the second semiconductor region and a first surface, and having a second conductivity type, and a second contact on the first surface and contacting the third semiconductor region, wherein a height of the first contact from the first surface is different from a height of the third semiconductor region from the first surface.
Type:
Grant
Filed:
March 16, 2020
Date of Patent:
December 26, 2023
Assignee:
Sony Semiconductor Solutions Corporation
Abstract: A lens assembly module includes a base, a cover, a lens unit, an elastic element, at least two conductive elements, at least one AF coil element and at least two first magnetic elements. The cover is coupled to the base. The lens unit is movably disposed in the cover. The elastic element is coupled to the lens unit. The conductive elements are coupled to the lens unit. The AF coil element is disposed on the lens unit, and two ends of the AF coil element are electrically connected to the conductive elements, respectively. The first magnetic elements are disposed in the cover. A part of each of the inner portions is overlapped along a direction parallel to an optical axis and electrically connected to each conductive element. The AF coil element and the conductive elements are electrically connected by a welding method.
Abstract: A camera module includes a housing, and a reflective module changing a direction of light incident on the housing. The reflective module includes a first reflective member having a reflective surface, a holder fixedly coupled to the first reflective member, a first magnetic member mounted on the holder, and a second magnetic member mounted in the housing, facing the first reflective member, and spaced apart from the first magnetic member.
Type:
Grant
Filed:
July 22, 2021
Date of Patent:
December 19, 2023
Assignee:
Samsung Electro-Mechanics Co., Ltd.
Inventors:
Ah Hyeon Im, Ta Kyoung Lee, Jung Woo Kim, Do Seop Hwang, Kyeong Jun Kim, Jae Hyuk Kim
Abstract: An apparatus includes a first sensor unit that includes a plurality of first sensors arranged in the first direction which include a first sensor configured to receive a first image formed by light with a first wavelength, a second sensor unit that includes a plurality of second sensors arranged in the first direction which include a second sensor configured to receive a second image formed by light with a second wavelength, and a controller configured to control the first and second sensor units. The controller controls the plurality of first sensors under a first common exposure condition, and controls the plurality of second sensors in the second sensor unit under a second common exposure condition.
Abstract: A vibration actuator control apparatus includes a control amount output unit. The control amount output unit includes a trained model trained by machine learning configured to output a control amount, if the target speed and a value based on the target position are input to the trained model, to move the contact body relative to the vibrator. The value based on the target position is a value based on a product of first and second values. The first value is a value based on a difference between the target position and a detection position detected from the vibration actuator moved based on the control amount. The second value is a value based on a ratio between the control amount output from the control amount output unit and a value output from the trained model if the target speed and a predetermined value are input to the trained model.
Abstract: An image capturing apparatus comprises an image sensor and a focus detection unit configured to, based on an image signal obtained by the image sensor while performing a scan operation that causes a focus lens to move along an optical axis of the imaging optical system, calculate a focus evaluation value and detect a position of the focus lens at which the focus evaluation value is a maximum, wherein the focus detection unit, in a case where the imaging optical system includes a reflective optical system in which a part of a light beam is blocked, sets a calculation method of the focus evaluation value or a control method of the focus lens during the scan operation based on information relating to a shape of the reflective optical system.
Abstract: A method includes obtaining a first preview picture collected by a camera, where an angle of view FOV of the camera is a first FOV value. The camera collects the first preview picture based on a second FOV value, and the second FOV value is less than the first FOV value. The method further includes adjusting the second FOV value to a third FOV value when it is detected that a quantity of at least one target human face in the first preview picture is greater than a first preset value, where the third FOV value is greater than the second FOV value, and the third FOV value is less than or equal to the first FOV value; and outputting an image that is photographed by the camera based on the third FOV value.
Abstract: A lens interchangeable digital camera includes an image sensor in which a subject image is formed on an imaging surface through an imaging optical system including a zoom lens and a sensor movement type shake correction mechanism that performs a sensor movement operation of moving the image sensor in a direction to cancel a shake. A zoom operation determination unit determines whether or not a zoom operation in which the zoom lens moves is being performed. In a case where the zoom operation determination unit determines that the zoom operation is being performed, an operation deciding unit prohibits a shift operation which is at least a part of a sensor movement operation which is allowed while the zoom operation is stopped.
Abstract: A sensor device includes a housing. The housing includes a front plate and a back plate, and a printed circuit board encased by the housing. The printed circuit board includes an image sensor, an image sensor processor, and conducting layers interposed between insulating layers. A conducting layer of the conducting layers includes power planes. One of the power planes is connected to a decoupling capacitor that carries power to the image sensor or the image sensor processor.
Type:
Grant
Filed:
February 15, 2022
Date of Patent:
November 7, 2023
Assignee:
Pony Al Inc.
Inventors:
Li Niu, Hanxiao Xie, Bin Han, Zaichang Zhao, Jordan Renovato Bravo
Abstract: An imaging device in which an autofocus function can be performed without using brightness information is provided. In an imaging device according to one aspect, a density of points obtained by plotting two-dimensional point data of a plurality of event data as points on a plane, the event data outputted from an imaging element in a predetermined period in a state in which a focal point of a light receiving lens is adjusted by an adjustment mechanism, is calculated as a point density. When the point density is calculated, a control unit drives and controls the adjustment mechanism based on comparison results between the point density currently calculated and the point density last calculated to thereby adjust the focal point toward the in-focus position. In another aspect, an imaging device having an autofocus function can be provided without using event data.
Abstract: A method according to embodiments of the invention includes creating a three-dimensional profile of a scene, calculating a relative amount of light for each portion of the scene based on the three-dimensional profile, and activating a light source to provide a first amount of light to a first portion of the scene, and a second amount of light to a second portion of the scene. The first amount and the second amount are different. The first amount and the second amount are determined by calculating a relative amount of light for each portion of the scene.
Type:
Grant
Filed:
November 30, 2021
Date of Patent:
October 31, 2023
Assignee:
Lumileds LLC
Inventors:
Arjen Gerben Van der Sijde, Nicola Bettina Pfeffer, Pieter Johannes Quintus van Voorst Vader, Yourii Martynov
Abstract: A vehicular camera system includes a camera module disposed at a vehicle that captures image data. The camera module includes a printed circuit board (PCB) having an imager disposed thereat that includes an imaging array having at least one million photosensors arranged in rows and columns. The camera module includes a lens aligned with the imager. The system includes an electronic control unit (ECU) with electronic circuitry and associated software. With the camera module disposed at the vehicle, and responsive to images imaged at the imager not being focused, the vehicular camera system adjusts position of the imager relative to the PCB to bring images imaged at the imager into focus.
Abstract: A camera may include an image sensor attached with a substrate configured to move relative to one or more lenses of the camera in one or more directions. The camera may include one or more actuators to control movement of the image sensor, which may include at least one magnet and at least one corresponding coil. The magnet of the actuators may be attached with the substrate, outside a perimeter of the substrate or on the substrate but close to the perimeter of the substrate. The magnet may cause the adjacent portion of the substrate to become cantilevered with only partial support. The camera may include a frame structure having one or more raised regions towards the magnet to reduce a stress on the cantilevered portion of the substrate, e.g., during a drop or shock event.
Type:
Grant
Filed:
September 8, 2021
Date of Patent:
October 24, 2023
Assignee:
Apple Inc.
Inventors:
Nicholas D Smyth, Hiran R Rathnasinghe, Nitin Kumar Chennupati
Abstract: This application provides a compact camera module, which includes a first actuator, an optical lens component, a ray adjustment component, and an image sensor. The ray adjustment component and the image sensor are sequentially disposed along a direction of a principal optical axis of the optical lens component. The optical lens component is configured to receive rays from a photographed object. The ray adjustment component is configured to fold an optical path of the rays propagated from the optical lens component. The first actuator is configured to drive the ray adjustment component to move, so that the rays whose optical path is folded are focused on the image sensor.
Abstract: A control apparatus includes at least one processor or circuit configured to execute a plurality of tasks including a first acquiring task configured to acquire information on an image shift sensitivity to a tilt of an imaging optical system corresponding to an image point position of the imaging optical system, which information includes an influence of a distortion of the imaging optical system, and a second acquiring task configured to acquire an image-stabilization driving amount that is used for an image stabilization by an image stabilizer configured to provide the image stabilization. The second acquiring task acquires the image-stabilization driving amount corresponding to a predetermined image point position using the information on the image shift sensitivity corresponding to the predetermined image point position.
Abstract: An electronic device includes a display and a control unit. The display displays a plurality of images of a subject captured in a first image-capturing region of an image sensor. The control unit controls the image sensor so as to set image-capturing conditions for the first image-capturing region to be different from image-capturing conditions for a second image-capturing region of the image sensor by using an image selected from the plurality of images displayed on the display.
Abstract: This invention is about an imaging system that uses conventional cameras and a single laser line to perform quality control at the output of a converting machine or a press. The system uses several cameras distributed over the width of the printed sheets. Thanks to the laser line, it can reconstruct the complete image of the printed matter even when the sheets are not perfectly flat or at varying height, compensating geometric as well as photometric distortions. The use of conventional cameras results in a cost effective system.
Type:
Grant
Filed:
March 18, 2020
Date of Patent:
October 17, 2023
Assignee:
BOBST MEX SA
Inventors:
Francis Pilloud, Pablo Antolinez, Olivier Porret