Patents Examined by Pamela M Bays
  • Patent number: 10278765
    Abstract: A system and method of controlling the application of energy to tissue using measurements of impedance are described. The impedance, correlated to the temperature, may be set at a desired level, such as a percentage of initial impedance. The set impedance may be a function of the initial impedance, the size and spacing of the electrodes, the size of a targeted passageway, and so on. The set impedance may then be entered into a PID algorithm or other control loop algorithm in order to extract a power to be applied to a treatment device.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 7, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Jerry Jarrard
  • Patent number: 10271727
    Abstract: A system for monitoring cardiac health of a user including a local sensing subsystem, a contactless interrogation subsystem, and a remote monitoring subsystem. The local sensing subsystem may include a sensor patch configured to attach to the user and include a substrate, a passive radio-frequency identification transponder, and a first antenna. The contactless interrogation subsystem may include an interrogator separated from the sensor patch, which may include a second antenna, a demodulator, and a communications link. The remote monitoring subsystem may include a computing system comprising a processor for executing instructions. The local sensing subsystem may be adapted to perform at least one scan. The contactless interrogation subsystem may be adapted to operate the demodulator to receive a cardiac event and to operate the communications link to transmit the cardiac event. The remote monitoring subsystem may be adapted to execute the instructions to detect an arrhythmia from the cardiac reading.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: April 30, 2019
    Assignee: Medicomp, Inc.
    Inventors: Sean Marcus, Chris Chang, Scott Baskerville
  • Patent number: 10264969
    Abstract: A method of operating a wireless ECG sensor system may include (1) wirelessly transmitting, using a second antenna, electromagnetic radiation having a frequency equal to the resonant frequency of a first antenna of a sensor patch; (2) inductively receiving, using the first antenna, power for operating a passive RFID transponder of the sensor patch; and (3) operating the microcontroller of the sensor patch to perform at least one scan, wherein performing the at least one scan is defined as: (a) receiving a cardiac activity signal from at least one of the positive and negative electrodes of the sensor patch, (b) retrieving a location identifier from the storage medium of the sensor patch, and (c) operating the load modulation switch of the sensor patch to alter a voltage amplitude of the electromagnetic radiation to transmit to a demodulator a cardiac event reading comprising the cardiac activity signal and the location identifier.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: April 23, 2019
    Assignee: Medicomp, Inc.
    Inventors: Sean Marcus, Chris Chang, Scott Baskerville
  • Patent number: 10226621
    Abstract: A pacemaker is provided. The pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and at least one carbon nanotube structure located in the matrix. A first end of each carbon nanotube structure protrudes out of a first surface of the matrix for stimulating the human tissue, and a second end of each carbon nanotube structure protrudes out of a second surface of the matrix to electrically connect to the lead.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 12, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Qian, Yu-Quan Wang, Liang Liu, Li Fan, Wen-Mei Zhao, Chen Feng
  • Patent number: 10201385
    Abstract: An irrigated ablation catheter adapted for direct tissue contact has micro-elements that provide more accurate sensing of tissue, including thermal and electrical properties for temperature and impedance measurements. The micro-elements extend through a hollow chamber of an irrigated ablation electrode, and distal ends thereof can protrude outside of electrode or be flush with the electrode. The micro-elements have a protective guide tube in which components enabling temperature sensing or electrical sensing are encased.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 12, 2019
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Debby Grunewald, Meir Bar-Tal
  • Patent number: 10201696
    Abstract: A defibrillation electrode pad includes an electrode section and a CPR administration section. The electrode section and the CPR administration section are positioned in the defibrillation electrode pad relative to each other such that the CPR administration section is located above a sternum of an adult subject and the electrode section is located in a position appropriate for the administration of a defibrillation shock to the adult subject when the defibrillation electrode pad is oriented in a first orientation and such that the CPR administration section is located above a sternum of a pediatric subject and the electrode section is located in a position appropriate for the administration of a defibrillation shock to the pediatric subject when the defibrillation electrode pad is oriented in a second orientation different from the first orientation.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: February 12, 2019
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Ward Hamilton, Deborah T. Jones, David N. Craige, III, Melissa M. Dascoli, E. Jane Wilson, Ian B. Durant
  • Patent number: 10159833
    Abstract: A lead anchor includes a body defining a lead lumen having a first opening and a second opening through which a lead can pass. The body further defines a transverse lumen that intersects the lead lumen. An exterior member is disposed around at least a portion of the body. The exterior member is formed of a biocompatible material. A fastener anchors the lead to the body through the transverse lumen by deforming a portion of the lead. The transverse lumen is configured and arranged to receive the fastener. At least at least two suture tabs extend from the exterior member and are configured and arranged for receiving a suture to suture the lead anchor to patient tissue.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: December 25, 2018
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Quynh Nguyen-Stella, Kenny Kinyen Chinn, John Michael Barker, Surekha B. Husmann, Roger Chen
  • Patent number: 10124164
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 13, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10099051
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. There is also an active path electrically extending between the active end metallization of the chip capacitor and the lead wire.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 16, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10098544
    Abstract: A wireless ECG sensor system includes a sensor patch configured to attach to a user. The sensor patch may include a substrate having a positive and a negative electrode, and a passive radio-frequency identification (RFID) transponder carried by the substrate. The RFID may include a first antenna, a non-transitory and non-volatile storage medium in electrical communication with the first antenna, a load modulation switch in electrical communication with the first antenna, and a microcontroller in electrical communication with the first antenna and in data communication with both the storage medium and the load modulation switch. The system may also include an interrogator device having a second antenna configured to wirelessly transmit electromagnetic radiation having a resonant frequency of the first antenna of the sensor patch, and a demodulator configured to measure a voltage amplitude of the electromagnetic radiation wirelessly transmitted by the second antenna.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: October 16, 2018
    Assignee: Medicomp, Inc.
    Inventors: Sean Marcus, Chris Chang, Scott Baskerville
  • Patent number: 10080889
    Abstract: A hermetically sealed filtered feedthrough includes a chip capacitor disposed on a circuit board on a device side. A first low impedance electrical connection is between a capacitor first end metallization and a conductor which is disposed through an insulator. A second low impedance electrical connection is between the capacitor second end metallization and a ferrule or housing. The second low impedance electrical connection may include an oxide-resistant electrical connection forming the hermetic seal between the insulator and the ferrule or housing and an electrical connection between and to the second end metallization and directly to the oxide-resistant electrical connection. Alternatively, the second low impedance electrical connection may include an oxide-resistant metal addition attached directly to the ferrule or housing and an electrical connection between and to the second end metallization and directly to the oxide-resistant metal addition.
    Type: Grant
    Filed: February 23, 2014
    Date of Patent: September 25, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel
  • Patent number: 10070815
    Abstract: A method for knitting a garment having a tubular form, including knitting at least one vertical conductive textile trace on a machine having N participating feeders and M needles. The method includes the steps of continuously knitting the tubular form with one or more flexible non-conductive base yarns, and knitting the vertical conductive textile trace integrally within the tubular form, using a conductive yarn, in addition to spandex yarns, but not the base yarns. The conductive yarn is knitted in a float-loop form by knitting a stitch and skipping over y needles, as follows: repeatably knitting a line segment Lk, using feeder Fi and starting at needle D1; and knitting line segment Lk+1, using the next feeder and start stitching the first float-loop at needle D1+s where 0<s<y.
    Type: Grant
    Filed: November 23, 2013
    Date of Patent: September 11, 2018
    Assignee: Healthwatch LTD.
    Inventors: Boaz Shoshani, Renen Ben David
  • Patent number: 10058310
    Abstract: A surgical device for operating on tissue comprises an end effector, a shaft, and an interface assembly. The shaft comprises an articulation section operable to provide deflection of the end effector relative to the longitudinal axis of the shaft. The interface assembly comprises a plurality of pulleys associated with drive shafts driven by an external system. The pulleys are operable to cause rotation of one or both of the shaft or end effector. The pulleys are further operable to cause articulation of the articulation section. The interface assembly further comprises drive components operable to cause movement of components of the end effector.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 28, 2018
    Assignee: Ethicon LLC
    Inventor: Shailendra K. Parihar
  • Patent number: 10052452
    Abstract: Dream stage enhancement uses a headband with EEG-EOG sensors, onboard processors, memory, coarse and fine time REM waveform detection modules, LEDs and an audio playback unit. After normalization to the user's EEG waveforms, the user's EEG-EOG signals are processed, REM and NREM stages detected and light, sound or AV stimuli are presented to the user based upon user-supplied light-sound-AV stimuli commands. To provide a reality check control (“RCC”), the head unit has a user actuatable RC interface whereby during sleep, RC stimuli are presented when the user depresses the RCC control which plays back the user supplied stimulus. In a “learning mode,” the user selects “Recall” or “No Recall” (“NR”) after the sleep period. If NR, then the system changes the color of light stimuli, light intensity, flash, audio sound type, audio intensity, and AV. If “Recall” the user supplied stimuli commands are carried out.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: August 21, 2018
    Inventors: Daniel Carleton Schoonover, Andrew Holland Smiley
  • Patent number: 10045810
    Abstract: An HF surgical appliance comprising an HF generator having an output circuit, which contains an output transformer and has an output impedance. Output terminals, to which an HF surgical instrument can be connected, are provided, said instrument supplying a high-frequency current with a specific frequency into tissue to treat the same. An additional output circuit containing an additional transformer, which is connected between the output circuit and the output terminals to reduce the output impedance is also provided. In this way, the HF surgical appliance can be operated with a high power output even on loads having low impedance.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: August 14, 2018
    Assignee: ERBE ELEKTROMEDIZIN GMBH
    Inventors: Heiko Schall, Erich Werner, Marc Kegreiss, Jürgen Beller
  • Patent number: 10029102
    Abstract: A neuromodulation system and method of providing therapy to a patient. Electrical energy is delivered to the patient in accordance with a modulation parameter, thereby providing therapy to the patient, and the modulation parameter of the delivered electrical energy is varied over a period of time, such that the delivered electrical energy is continually maintained at a sub-threshold level throughout the period of time. The sub-threshold level may be referred to as a patient-perception threshold, which may be referred to as a boundary below which a patient does not sense delivery of the electrical energy. For example, in a spinal cord modulation system, the patient-perception threshold may be a boundary below which a patient does not experience paresthesia.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: July 24, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Jordi Parramon, Sridhar Kothandaraman, Christopher Ewan Gillespie, Sarvani Grandhe
  • Patent number: 10016596
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: July 10, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz
  • Patent number: 10016595
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: July 10, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10004635
    Abstract: A device for inducing production of tears may include a body extending from a proximal end to a distal end. The body may be configured for insertion through a puncta of a subject. The device also may include a stimulus delivery mechanism positioned between the proximal end and the distal end and an induction coil operably coupled to the stimulus delivery mechanism. Further, the device may include an external controller wirelessly coupled to the induction coil for inductively transferring energy to the induction coil.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: June 26, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO
    Inventor: Malik Y. Kahook
  • Patent number: 10004634
    Abstract: A device for inducing production of tears may include a body extending from a proximal end to a distal end. The body may be configured for insertion through a puncta of a subject. The device also may include a stimulus delivery mechanism positioned between the proximal end and the distal end and an induction coil operably coupled to the stimulus delivery mechanism. Further, the device may include an external controller wirelessly coupled to the induction coil for inductively transferring energy to the induction coil.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: June 26, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF COLORADO
    Inventor: Malik Y. Kahook