Patents Examined by Pankti Patel
-
Patent number: 8470079Abstract: The present invention relates to a process for separating off CO2 from a gas stream, wherein in a second step the CO2 is removed from the CO2-absorbing agent by means of phase separation.Type: GrantFiled: July 31, 2007Date of Patent: June 25, 2013Assignee: Universital DortmundInventors: David Agar, Yudy Halim Tan, Zhang Xiaohui
-
Patent number: 8470077Abstract: Processes for operating an ammonia stripper at a low pressure in a gas purification system include providing a first side-draw stream from the ammonia stripper; heating the first side-draw stream with a second side-draw stream from a regenerator; providing a stripper offgas stream from the ammonia stripper to a stripper overhead condenser; and utilizing the stripper offgas stream as a heat source for a regenerating system fluidly coupled to the stripper overhead condenser. Also disclosed are systems for implementing the processes.Type: GrantFiled: November 17, 2011Date of Patent: June 25, 2013Assignee: ALSTOM Technology LtdInventors: Sanjay Kumar Dube, Daniel Nicolaus Secundus Mattstedt, Joseph P. Naumovitz
-
Patent number: 8465569Abstract: A gas separation unit 102, 200, 300 for permeating a gas out from a pressurized feed mixture includes an input manifold 104, 204, an exhaust manifold, 106, 206 and a permeate assembly 108, 208, 303. The permeate assembly supports one or more permselective foils 130, 132, 218, 232, 318 over a hollow cavity 134, 272, 306 supported by a microscreen element 142, 144, 228, 230, 326. The microscreen element includes non-porous perimeter walls 190, 192, 278 supported on a frame surface and a porous central area 194, 280 supported over the hollow cavity. A porous spacer 138, 140, 174, 234 disposed inside the hollow cavity structurally supports the entire microscreen surface spanning the hollow cavity while also providing a void volume for receiving fluid passing through the porous central area and for conveying the fluid through the hollow cavity.Type: GrantFiled: September 16, 2008Date of Patent: June 18, 2013Assignee: Protonex Technology CorporationInventors: David Edlund, Paul Osenar, Nathan Palumbo, Ronald Rezac, Matt Steinbroner
-
Patent number: 8460437Abstract: The present invention provides a method and apparatus for the treatment of process gas from an anaerobic digestion system or a landfill gas system. In one embodiment, the system comprises a caustic scrubber including a vertical column having a top and a bottom and including a counter current flow system, wherein a process gas stream flows up vertically through the column in counter current flow to a caustic liquid solution that flows downward through the column. The caustic liquid solution removes at least one acid from the process gas stream, wherein treated gas that is substantially free of acids bubbles out through an opening at the top of the vertical column.Type: GrantFiled: March 30, 2012Date of Patent: June 11, 2013Assignee: Clean Energy Renewable Fuels, LLCInventor: Jeffrey J. Grill
-
Patent number: 8460431Abstract: A method for regenerating an amine-containing scrubbing solution which is obtained during gas purification and in which CO2 and sulfur compounds are chemically bonded, as well as a system that is suitable for carrying out the method. The contaminated scrubbing solution is heated, compressed, and expanded in several stages such that CO2 and sulfur compounds are separated. The expanded scrubbing solution is subdivided into two partial streams, and one partial stream is recirculated into the process.Type: GrantFiled: August 12, 2008Date of Patent: June 11, 2013Assignee: MT-Biomethan GmbHInventor: Lothar Günther
-
Patent number: 8460436Abstract: The present invention relates processes of removal of acidic gases from a gas stream, comprising the steps of a) contacting a wash solution stream with said gas stream containing acidic gases to be removed to allow absorption of the acidic gases into the wash solution stream; b) withdrawing wash solution enriched with acidic gases from said wash solution stream at a first withdrawal level; c) cooling said withdrawn wash solution; and d) reintroducing said cooled wash solution to the wash solution stream at a first reintroduction level to form a mixed wash solution stream, said first reintroduction level being upstream of said first withdrawal level. The present invention also relates to systems for removal of acidic gases from a gas stream.Type: GrantFiled: November 24, 2009Date of Patent: June 11, 2013Assignees: Alstom Technology Ltd, Dow Global Technologies LLCInventors: Barath Baburao, Craig Schubert
-
Patent number: 8460415Abstract: A filter element has a reinforcement band or ring along at least a portion of the perimeter thereof and performing a support function thereat preventing or minimizing damage upon attempted percussive cleaning of the filter element by service personnel striking the perimeter against an impact surface. Alternatively, a failure band or ring is provided along at least a portion of the perimeter and performs a designated failure function to a failure condition thereat upon attempted percussive cleaning, with the failure condition providing at least one of: a) an indication to service personnel that the filter element has been damaged and should not be re-installed; and b) a deformed condition preventing re-installation.Type: GrantFiled: January 17, 2013Date of Patent: June 11, 2013Assignee: Cummins Filtration IP Inc.Inventor: Barry M. Verdegan
-
Patent number: 8454731Abstract: Vapor-liquid contacting apparatuses comprising a primary contacting zone and a secondary contacting zone are disclosed. A representative secondary contacting zone is a secondary absorption zone, such as a finishing zone for subsequent contacting of the vapor effluent from the primary contacting zone to further remove impurities and achieve a desired purity of purified gas exiting the secondary absorption zone. The secondary contacting zone is disposed below the primary contacting zone, such that the secondary contacting zone, which must operate efficiently in removing generally trace amounts of remaining impurities, is more protected from movement than the more elevated, primary or initial contacting stages for bulk impurity removal. The apparatuses are therefore especially beneficial in offshore applications where they are subjected to rocking.Type: GrantFiled: August 14, 2012Date of Patent: June 4, 2013Assignee: UOP LLCInventor: Zhanping Xu
-
Patent number: 8449655Abstract: The present invention relates to a process for purifying a gas mixture G-0 comprising dinitrogen monoxide, at least comprising the contacting of the gas mixture G-0 with a solvent mixture (I) at least comprising 50% by weight of water based on the overall solvent mixture (I), the pH of the solvent mixture (I) being in the range from 3.5 to 8.0, the desorption of a gas mixture G-1 from a composition (A), the contacting of the gas mixture G-1 with a solvent mixture (II) at least comprising 50% by weight of water based on the overall solvent mixture (II), the pH of the solvent mixture (II) being in the range from 2.0 to 8.0, and the desorption of a gas mixture G-2 from a composition (B), the pH being based in each case on a measurement with a glass electrode, and to the use of gas mixtures obtainable by a process according to the invention as oxidizing agents for olefins.Type: GrantFiled: December 7, 2007Date of Patent: May 28, 2013Assignee: BASF AktiengesellschaftInventors: Dieter Baumann, Beatrice Roessler, Joaquim Henrique Teles
-
Patent number: 8440006Abstract: An apparatus 100 for scrubbing flue gas 122, the apparatus 100 including a tower 140 having an inlet 120 receiving a flow of flue gas 122 and a recycle tank portion 142; a fluid 162 disposed in the recycle tank portion 142; and an aerator 150 having at least one opening 152 for introduction of an oxygen-containing gas 154 into the fluid 162, wherein the at least one opening 152 is positioned to release the oxygen-containing gas 154 at least at a distance greater than or equal to a predetermined radial distance F from the inlet 120, the predetermined radial distance F being equal to at least 10% of a diameter of the recycle tank portion 142.Type: GrantFiled: August 21, 2009Date of Patent: May 14, 2013Assignee: ALSTOM Technology LtdInventor: Dennis J. Laslo
-
Patent number: 8435325Abstract: Disclosed are methods for recovering CO2 and H2S from a feed gas including at least CO2 and H2S.Type: GrantFiled: October 19, 2009Date of Patent: May 7, 2013Assignee: Hitachi, Ltd.Inventor: Tomoko Akiyama
-
Patent number: 8419844Abstract: A moisture removal system for removing water moisture from an air stream and an associated method are provided. The moisture removal system includes one or more packed beds that include a water-entry surface at which liquid water is received and an air-entry surface that is located substantially opposite the water-entry surface and at which the air stream is received. The air stream passes through the one or more packed beds in a direction substantially counter-current to the passage of the liquid water and the liquid water and the air stream contact one another in the one or more packed beds resulting in the removal of at least a portion of the water moisture from the air stream. The moisture removal system can be located upstream of and be operably connected to the inlet of a gas turbine system to which the air stream is delivered from the moisture removal system.Type: GrantFiled: October 3, 2011Date of Patent: April 16, 2013Inventors: Abhijeet Madhukar Kulkarni, Richard Michael Ashley Mass, John Carl Davies
-
Patent number: 8419831Abstract: Disclosed is a method for recovering carbon dioxide from a gas containing carbon dioxide, comprising the step (1) of bringing a gas containing carbon dioxide into contact with an aqueous solution containing 2-isopropylaminoethanol and at least one substance selected from the group consisting of piperazines and alkanolamines to absorb carbon dioxide into the aqueous solution; and the step (2) of heating the aqueous solution containing carbon dioxide absorbed therein, which is obtained in the step (1), to separate and recover carbon dioxide from the solution.Type: GrantFiled: June 24, 2008Date of Patent: April 16, 2013Assignee: Research Institute of Innovative Technology for the EarthInventors: Shinkichi Shimizu, Firoz Alam Chowdhury, Hiromichi Okabe, Kazuya Goto
-
Patent number: 8414694Abstract: Provided are a CO2 absorber that reduces CO2 contained in flue gas; a regenerator that reduces CO2 contained in rich solvent absorbing CO2 to regenerate the rich solvent, so that lean solvent having the CO2 reduced in the regenerator is reused in the CO2 absorber; a heat exchanger that allows the rich solvent to exchange heat with the lean solvent; and a controller that controls to extract rich solvent portion that is part of the rich solvent, to allow the rich solvent portion to by pass the heat exchanger, and to be supplied into the top of the regenerator without exchanging heat so as to minimize a sum of an enthalpy that is taken out of the regenerator as CO2 gas accompanying steam and an enthalpy of the lean solvent after heat exchange with the rich solvent in the heat exchanger.Type: GrantFiled: December 23, 2009Date of Patent: April 9, 2013Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.Inventors: Masaki Iijima, Kouki Ogura, Masahiko Tatsumi, Yasuyuki Yagi
-
Patent number: 8404032Abstract: A humidity-conditioning sheet 10 excellent in reversibility and responsiveness of a moisture adsorbing/desorbing ability of rapidly adsorbing moisture at high ambient humidity and conversely rapidly desorbing adsorbed moisture at low ambient humidity includes a sheet-shaped humidity-conditioning layer 7 formed by bonding together, with a thermoplastic resin powder 4, humidity-conditioning particles 3 which reversibly adsorb and desorb water vapor. The void ratio of the humidity-conditioning layer 7 is 5% or more.Type: GrantFiled: December 10, 2007Date of Patent: March 26, 2013Assignee: Nippon Kasei Chemical Company LimitedInventors: Takahiro Endo, Masaru Shimoyama, Yuko Tsuruta, Yutaka Mori
-
Patent number: 8404027Abstract: A method for removal of CO2 from a flue gas stream, comprising the steps of: a) contacting a flue gas stream comprising CO2 with a first absorption liquid comprising NH3 such that the flue gas stream is depleted in CO2; b) contacting the flue gas stream depleted in CO2 of step a) with a second absorption liquid such that NH3 from the flue gas stream is absorbed in said second absorption liquid to form a flue gas stream depleted in CO2 and NH3; c) separating NH3 from the second absorption liquid such that a gas stream comprising NH3 is obtained; d) contacting said gas stream comprising NH3 separated in step c) with a third absorption liquid such that NH3 is absorbed in said third absorption liquid. A system for removal of CO2 from a flue gas stream, the system comprising: a CO2 absorption stage; an NH3 absorption stage; and a reabsorption stage.Type: GrantFiled: July 28, 2009Date of Patent: March 26, 2013Assignee: ALSTOM Technology LtdInventors: Peter Ulrich Koss, Frederic Zenon Kozak
-
Patent number: 8398757Abstract: A CO2 recovering apparatus includes a CO2 absorber that brings flue gas containing CO2 and O2 into contact with CO2 absorbing liquid to reduce CO2 in the flue gas; and a regenerator that reduces CO2 in CO2 absorbing liquid (rich solvent) that absorbed CO2 in the CO2 absorber to regenerate the CO2 absorbing liquid, so that the regenerated CO2 absorbing liquid (lean solvent) having CO2 reduced in the regenerator is reused in the CO2 absorber. A lower liquid reservoir is located at the bottom of the CO2 absorber, and an air-bubble gathering member is arranged therein to gather air bubbles included in the absorbing liquid.Type: GrantFiled: October 29, 2009Date of Patent: March 19, 2013Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.Inventors: Masaki Iijima, Masahiko Tatsumi, Yasuyuki Yagi, Kouki Ogura
-
Patent number: 8388738Abstract: A process for removing carbon dioxide from a fluid flow, wherein a) the fluid flow is brought into contact with an absorption agent which contains a solution of ammonia and at least one amino carboxylic acid and/or amino sulfonic acid, a charged absorption agent being obtained, and b) the charged absorption agent is regenerated while releasing carbon dioxide. The additional use of the amino carboxylic acid and/or amino sulfonic acid increases the circulation absorption capacity of the absorption agent.Type: GrantFiled: November 14, 2008Date of Patent: March 5, 2013Assignee: BASF SEInventors: Norbert Asprion, Georg Sieder, Ute Lichtfers, Hugo Rafael Garcia Andarcia
-
Patent number: 8382883Abstract: In one aspect, the present invention provides a curable composition useful in the preparation of a gas separation membrane. The curable composition comprises a polyvinyl alcohol; an aliphatic polyamine; a polyglycidyl ether; and a salt of a C2 to C4 heterocyclic amino acid. In another aspect the present invention provides a composition comprising a crosslinked polyvinyl alcohol comprising structural units derived from a polyglycidyl ether, a polyamine and the salt of a C2 to C4 heterocyclic amino acid. The compositions are useful in the preparation of gas separation membranes in which the C2 to C4 heterocyclic amino acid in the form of its salt functions as a mobile carrier of carbon dioxide.Type: GrantFiled: February 27, 2009Date of Patent: February 26, 2013Assignee: General Electric CompanyInventors: Gary William Yeager, Eric James Pressman, Scott Michael Miller, Cathryn Olsen
-
Patent number: 8377184Abstract: A CO2 recovery apparatus according to a first embodiment of the present invention includes: a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbing liquid to reduce CO2 in the flue gas; a regenerator that reduces CO2 in CO2 absorbing liquid (rich solvent) that has absorbed the CO2 in the CO2 absorber to regenerate the CO2 absorbing liquid, so that the regenerated absorbing liquid (lean solvent), having CO2 reduced in the regenerator, is reused in the CO2 absorber; a first compressor to a fourth compressor that compress the CO2 gas released from the regenerator; and an O2 reducing apparatus arranged between the second compressor and a second cooler to reduce O2 in the CO2 gas.Type: GrantFiled: October 27, 2009Date of Patent: February 19, 2013Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Keiji Fujikawa, Takuya Hirata, Tatsuya Tsujiuchi, Tsuyoshi Oishi