Patents Examined by Paolo Isada
  • Patent number: 9359964
    Abstract: Methods and systems are provided for purging condensate from a charge air cooler. In response to condensate in a charge air cooler during a tip-in, airflow is increased at a controlled rate to the intake manifold, purging condensate from the charge air cooler.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: June 7, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Chris Paul Glugla, Shuya Shark Yamada
  • Patent number: 9328653
    Abstract: The invention relates to an intercooler for a motor vehicle with an internal combustion engine that is supercharged in steps. In this case, the intercooler has an air outlet opening as well as two air inlet openings, a heat exchanger module being associated with each air inlet opening. Air channels of the two heat exchanger modules are ultimately brought together in an air box of the intercooler, which is connected to the air outlet opening. It is thus made possible to bring together compressed charging air from two supercharging assemblies only in the area of the intercooler. To improve the pressure ratios during operation of only one supercharging assembly, a non-return valve is provided in an air channel. Thus, a module for separately bringing the airways together can be eliminated, thereby reducing the installation space requirement.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: May 3, 2016
    Assignee: AUDI AG
    Inventors: Frank Huber, Markus Sonner
  • Patent number: 9273619
    Abstract: Methods and systems for minimizing the power consumed by a supercharger pump in an engine system. The methods and systems minimize the delta pressure across the pump with a control strategy for positioning the electronic throttle and supercharger bypass valve in a coordinated manner to deliver the required amount of fresh air flow into engine (i.e., the air flow associated with the driver's requested torque), while, at the same time, minimizing the power consumed by the supercharger pump for best fuel economy.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 1, 2016
    Assignee: FCA US LLC
    Inventors: Songping Yu, Anwar Alkeilani
  • Patent number: 9243568
    Abstract: A housing for a fresh gas supply device for an internal combustion engine with a turbocharger, includes a fresh gas connecting section which connects a charge air inlet and an air outlet. The housing has a main housing part and a housing cover, which can be removed from and secured to the main housing part. A corresponding fresh gas supply device includes the housing.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: January 26, 2016
    Assignee: KNORR-BREMSE Systeme fuer Nutzfahrzeuge GmbH
    Inventor: Mario Bacurin
  • Patent number: 9217396
    Abstract: According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: December 22, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Ko-Jen Wu
  • Patent number: 9181854
    Abstract: The present invention relates to a turbocharger (1) for an internal combustion engine (2) having at least one exhaust-gas recirculation line (3) which enters via an exhaust-gas mixing-in opening (12) into an intake line (10) of the internal combustion engine (2); having a turbine (4); and having a compressor (5); which is drive-connected to the turbine (4) and which has a compressor wheel (6) which is arranged in a compressor housing (7) into which the intake line (10) opens via a compressor inlet (11), having a mixing device (18) for mixing recirculated exhaust gas and fresh air, with the mixing device (18) having at least two guide plates (21, 22) in the shape of truncated cone shell segments which are arranged radially offset with respect to one another and which delimit in each case one inflow gap (23, 24) at their longitudinal edges arranged offset with respect to one another.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: November 10, 2015
    Assignee: BorgWarner Inc.
    Inventor: Thomas Lischer
  • Patent number: 9163555
    Abstract: Embodiments for a turbine-generator position in a compressor bypass flow path are presented. In one example, a method for an engine having a compressor comprises generating energy via a turbine-generator positioned in a bypass flow path of the compressor. In this way, the energy of the recirculated intake air may be recovered by the turbine-generator.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: October 20, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Gregory Patrick McConville, Karen Elizabeth Maceroni
  • Patent number: 9157323
    Abstract: An oscillatory rotary engine comprising a toroidal housing having an intake port and an exhaust port. The housing supports an output shaft and a plurality of stacked rotors are disposed within the housing and coupled to the output shaft. Each rotor includes a plurality of pistons disposed in spaced relation to each other about a circumference of the rotor. A resilient coupler connects the rotors to the output shaft. Preferably, the coupler comprises a plurality of nested spiral cuts extending through the rotor. Each piston may include a pawl that is operative to engage ratchets located around the housing, thereby allowing rotation of each rotor in only one direction. The oscillatory rotary engine may further include a compression bypass port that is operative to relieve intake air pressure during compression, whereby the engine has a compression ratio that is less than its expansion ratio.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: October 13, 2015
    Inventor: Mars Sterling Turner
  • Patent number: 9109544
    Abstract: A device is provided for compressor and charge air cooler protection in an internal combustion engine, such as a Diesel engine. The engine having an intake manifold and an exhaust manifold, first and second EGR routes, a charge air cooler, a turbocharger having a compressor and a turbine. A regulator is also provided for regulating the flow rate of exhaust gas and the splitting of exhaust gas between the first and second EGR route. A temperature sensor is also provided for sensing output temperature of gas at the outlet of said compressor. A method and computer readable medium embodying a computer program product are also provided that have a first phase of monitoring a parameter representative of the gas temperature at the output of the compressor and a second phase in which an activity involving engine components operation is performed. The activity is performed using temperature information determined in the monitoring phase.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: August 18, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alberto Vasallo, Federico Ferrero, Federico Luigi Guglielmone, Cristian Taibi
  • Patent number: 9097120
    Abstract: An assembly includes a cast cartridge component and a curved wall where the cast cartridge includes a base plate having an opening configured for receipt of a turbine wheel, an exhaust conduit having an inlet and an outlet, a cylindrical wall, and vanes disposed between the cylindrical wall and the base plate where adjacent vanes define throats; where the curved wall includes a proximal end and a distal end, and an upper edge and a lower edge; and where joinder of the proximal end and the outlet of the exhaust conduit, joinder of the upper edge and the cylindrical wall and joinder of the lower edge and the base plate forms a volute configured to direct exhaust received via the inlet to a turbine wheel via the throats. Various other examples of devices, assemblies, systems, methods, etc., are also disclosed.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: August 4, 2015
    Assignee: Honeywell International Inc.
    Inventors: Dominique Petitjean, Guillaume Dupont, Anthony Ruquart, Philippe Arnold, Manimurugan Palaniyappan, Manuel Marques, Jean-Jacques Laissus, Raphael Ceotto
  • Patent number: 9097177
    Abstract: The invention relates to a turbocharger (1) having a wastegate arrangement (6), in which the leakage at the guide of the regulating flap in a multi-stage turbocharger arrangement is reduced. The turbocharger (1) comprises a compressor (2) and a turbine (3). The turbine (3) comprises a turbine housing (4) which has a turbine housing outlet (5), and a wastegate device (6) which has a regulating flap (7). The regulating flap (7) is arranged on a regulating flap shaft (9) which is guided in the turbine housing (4) by means of a bush (8). The bush (8) is provided with an annular groove (11) formed on its inner circumference (10), which annular groove (11) is connected by means of at least one connecting bore (12, 13) to an annular collecting groove (14) which is provided in the turbine housing (3) and which is connected by means of a relief bore (15) to the turbine housing outlet (5).
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: August 4, 2015
    Assignee: BorgWarner Inc.
    Inventor: Stefan Jacob
  • Patent number: 9091275
    Abstract: An exemplary compressor housing includes a compressor volute; concentric walls that define an annular passage and a compressor wheel shroud disposed about a central axis where a compressor wheel positioned with respect to the shroud has an intended direction of rotation about the central axis; positioned with respect to the central axis, from a lower axial position to a higher axial position, a gas inlet to the annular passage, one or more ports extending between the shroud and the annular passage and a nozzle; and a gas volute to provide, to the gas inlet to the annular passage, gas having swirl in a direction opposite the intended direction of rotation of the compressor wheel. Various other exemplary devices, systems, methods, etc., are also disclosed.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: July 28, 2015
    Assignee: Honeywell International Inc.
    Inventor: Hua Chen
  • Patent number: 9062595
    Abstract: A method of operating a turbocharger apparatus on an internal combustion engine, having a first oil circuit and a second oil circuit, includes steps of sensing a plurality of engine operating parameters via a plurality of sensors associated with the internal combustion engine; providing oil to the engine from the first oil circuit at a first pressure level; controlling operation of the second oil circuit for said engine via an electronic control unit, based on the sensed engine operating parameters; and applying a variable hydraulic preload to said first and second bearing assemblies via the operation of the second oil circuit, wherein oil from the second oil circuit is provided at a second pressure level which is different from the first pressure level. A system usable for carrying out such method is also described.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 23, 2015
    Inventor: Gregg Jones
  • Patent number: 9032728
    Abstract: A supercharger lubricating structure for an internal combustion engine is provided that can supply oil to a supercharger through a short oil passage without use of external piping and downsize a lubricating oil pump. A supercharger lubricating structure for an internal combustion engine can be characterized by the following: A rotating shaft can be connected to a crankshaft via a joint. A connection pipe can be insertably passed through the crankshaft and the rotating shaft to allow an intra-crankshaft oil-feed passage and an intra-rotating-shaft oil-feed passage to communicate with each other. An eccentric shaft portion can be provided on the rotating shaft. A supercharger composed of an orbiting movable scroll and front and rear fixed scrolls can be provided on the eccentric shaft portion via needle bearings. The front and rear fixed scrolls can be provided with ball bearings and the needle bearing supporting the rotating shaft.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 19, 2015
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Tetsuya Nakayasu, Shunsuke Muroi
  • Patent number: 9027341
    Abstract: Systems and methods for a charge-air-cooler are provided. The system may include an engine air passage, a charge-air-cooler including a plurality of heat exchange passages, and a condensate collector positioned within an interior of the charge-air-cooler, wherein the condensate collector is in fluid communication with at least one heat exchange passage and the engine air passage.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: May 12, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: Robert Hornblower Meyer
  • Patent number: 9021802
    Abstract: An assembly includes a cast cartridge component that includes a base plate having an opening configured for receipt of a turbine wheel, a cylindrical wall that comprises a shroud portion, one or more supports disposed between the cylindrical wall and the base plate, an exhaust conduit that has an inlet, an outlet and a wastegate opening positioned intermediate the inlet and the outlet, and a substantially planar surface integral to the exhaust conduit, the wastegate opening located on the planar surface; and a wastegate outlet component that includes a cylindrical portion that extends between and defines an inlet and an outlet, and a cover portion configured to cover the substantially planar surface of the cast cartridge component to form a wastegate chamber where one or more openings provide for flow of exhaust from the wastegate chamber to the cylindrical portion. Various other examples of devices, assemblies, systems, methods, etc., are also disclosed.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 5, 2015
    Assignee: Honeywell International Inc.
    Inventors: Dominique Petitjean, Guillaume Dupont, Anthony Ruquart, Philippe Arnold, Manimurugan Palaniyappan, Manuel Marques, Jean-Jacques Laissus, Raphael Ceotto
  • Patent number: 9010112
    Abstract: Various systems and methods are described for a charge air cooler coupled to an engine. One example method comprises collecting condensate discharged from the cooler in a condensation trap coupled to an outside surface of a bend in an outlet duct of the cooler; during a first condition, temporarily storing the condensate in a reservoir of the condensation trap; and, during first and second conditions, releasing the condensate to the outlet duct in a direction of airflow via a tube.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: April 21, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: James Raymond Palm
  • Patent number: 8919118
    Abstract: A motor vehicle is provided having a combustion engine, an automatic transmission, a turbocharger with variable geometry pre-compressing combustion air for the combustion engine and a turbocharger control unit for varying the turbocharger geometry, the turbocharger control unit is equipped before a downshifting of the automatic transmission to vary the geometry in the turbocharger in the direction of a reduction of the rotational speed of the turbocharger.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Martin Gentile, Gernot Becker, Thomas Stock
  • Patent number: 8720200
    Abstract: In the case where a low-pressure-side supercharging pressure acquired value corresponding to the pressure of inlet gas at the outlet of a low-pressure compressor operated in a twin supercharging mode is less than a target supercharging pressure in a single supercharging mode, changeover from the twin supercharging mode to the single supercharging mode is prohibited. Meanwhile, in the case where the low-pressure-side supercharging pressure acquired value is equal to or greater than the target supercharging pressure, the changeover from the twin supercharging mode to the single supercharging mode is permitted. Alternatively, in the case where a supercharging pressure during operation in the single supercharging mode is less than a target value of the pressure of supply gas at the outlet of the low-pressure compressor in the twin supercharging mode, changeover from the single supercharging mode to the twin supercharging mode is prohibited.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: May 13, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihisa Tsukamoto
  • Patent number: 8661817
    Abstract: The coolant in the cooling jacket of a dual cycle internal combustion steam engine is intentionally maintained at an elevated temperature that may typically range from about 225° F.-300° F. or more. A non-aqueous liquid coolant is used to cool the combustion chamber together with a provision for controlling the flow rate and residence time of the coolant within the cooling jacket to maintain the temperature of the coolant at a selected elevated temperature that is substantially above the boiling point of water but below the boiling point of the coolant. The coolant is passed from the jacket through a heat exchanger in a first circuit to transfer heat to a vaporizable working fluid such as water and is then returned. An optional second circuit is an intrajacket perturbation circuit within the engine can be used to disrupt and disperse pockets of vapor that may tend to form before damaging hot spots can develop around the combustion chamber.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: March 4, 2014
    Assignee: Thermal Power Recovery LLC
    Inventors: James V. Harmon, Sr., Jerry A. Peoples