Patents Examined by Paul A. Wartalowicz
  • Patent number: 10971278
    Abstract: This superconducting wire includes: a strand including a superconducting material; and a stabilizer material for superconductor arranged in contact with the strand, wherein the stabilizer material for superconductor includes a copper material which contains one kind or two kinds or more of additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) for a total amount of 3 ppm by mass or more and 400 ppm by mass or less, with the remainder being Cu and unavoidable impurities, the total concentration of the unavoidable impurities other than O, H, C, N, and S, which are gas components, is 5 ppm by mass or more and 100 ppm by mass or less, and compounds including one kind or two kinds or more selected from CaS, CaSO4, SrS, SrSO4, BaS, BaSO4, (RE)S, and (RE)2SO2 are present in the matrix.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: April 6, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki
  • Patent number: 10968501
    Abstract: The invention concerns a process to manufacture a flat-rolled product, notably for the aeronautic industry containing aluminum alloy, in which, notably a flattening and/or stretching is performed with a cumulated deformation of at least 0.5% and less than 3% and a short heat-treatment is performed in which the sheet reaches a temperature between 130° C. and 170° C. for a period of 0.1 to 13 hours. The invention notably makes it possible to simplify the forming process of fuselage skins and to improve the balance between static mechanical strength properties and damage tolerance properties.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: April 6, 2021
    Assignee: CONSTELLIUM FRANCE
    Inventors: Frank Eberl, Bernard Bes
  • Patent number: 10960496
    Abstract: There is provided a solder alloy in which 0.5 mass % or more and 1.25 mass % or less of Sb, In satisfying the following formula (I) or (II) when [Sb] is set as a Sb content percentage (mass %) and [In] is set as an In content percentage (mass %): in a case of 0.5?[Sb]?1.0, 5.5?[In]?5.50+1.06[Sb] . . . (I), in a case of 1.0<[Sb]?1.25, 5.5?[In]?6.35+0.212[Sb] . . . (II) (in the formula, [Sb] indicates a Sb content percentage (mass %) and [In] indicates an In content percentage (mass %)), 0.5 mass % or more and 1.2 mass % or less of Cu, 0.1 mass % or more and 3.0 mass % or less of Bi, 1.0 mass % or more and 4.0 mass % or less of Ag, and 0 mass % or more and 0.025 mass % or less of Co are contained, and has the remainder consisting essentially of Sn.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: March 30, 2021
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Shinnosuke Akiyama, Kiyohiro Hine, Hidetoshi Kitaura, Akio Furusawa
  • Patent number: 10964454
    Abstract: The present invention is a superconducting wire including: a wire formed of a superconducting material; and a superconducting stabilization material disposed in contact with the wire, in which the superconducting stabilization material is formed of a copper material which contains: one or more types of additive elements selected from Ca, Sr, Ba, and rare earth elements in a total of 3 ppm by mass to 400 ppm by mass; a balance being Cu and inevitable impurities, and in which a total concentration of the inevitable impurities excluding O, H, C, N, and S which are gas components is 5 ppm by mass to 100 ppm by mass.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: March 30, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki
  • Patent number: 10961399
    Abstract: A method of manufacturing an insulated flat long-length second-generation HTS wire by preparation of an electrodeposition emulsion, stirring the mixture for a time necessary for the neutralization reaction between the polyimide and the stabilizer to occur to form an intermediate solution, adding a precipitating agent to the intermediate solution while stirring; electrodeposition of the emulsion onto a HTS wire in a cathode cell while the HTS wire is moved through the cell containing the emulsion where the cathode is at a negative potential and the wire is at a positive potential; thermal treatment to form an insulating film on the wire surface by heating at a temperature not exceeding 200° C. A long-length HTS wire with a high-quality thin polyimide insulation coating of a high dielectric strength can be obtained, as well as an insulated HTS strand of a complex shape, e.g., of a Roebel type.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: March 30, 2021
    Assignee: S-Innovations LLC
    Inventors: Irina A. Martynova, Artem M. Makarevich
  • Patent number: 10946440
    Abstract: Steam exhaust ports are located around a perimeter of a direct chill casting pit, at various locations from below the top of the pit to the pit bottom to rapidly remove steam from the casting pit with addition of dry excess air. Gas introduction ports are also located around a perimeter of the casting pit and configured to introduce an inert gas into the casting pit interior.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: March 16, 2021
    Assignee: ALMEX USA, Inc.
    Inventors: Ravindra V. Tilak, Rodney W. Wirtz, Ronald M. Streigle
  • Patent number: 10950373
    Abstract: An R-TM-B hot-pressed and deformed magnet (here, R represents a rare earth metal selected from the group consisting of Nd, Dy, Pr, Tb, Ho, Sm, Sc, Y, La, Ce, Pm, Eu, Gd, Er, Tm, Yb, Lu, and a combination thereof, and TM represents a transition metal) of the present invention comprises flat type anisotropic magnetized crystal grains and a nonmagnetic alloy distributed in a boundary surface between the crystal grains, and thus the magnet of the present invention has an excellent magnetic shielding effect as compared with an existing permanent magnet since the crystal gains can be completely enclosed in the nonmagnetic alloy, so that a hot-pressed and deformed magnet with enhanced coercive force can be manufactured through a more economical process.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: March 16, 2021
    Assignee: LG ELECTRONICS INC.
    Inventors: Seok Namkung, Deokhai Park, Namseok Kang
  • Patent number: 10943712
    Abstract: A bundle of superconducting cables employs a plurality of superconducting cables, each having a former and a plurality of superconducting tape conductors wound in at least one layer around the former in a helical fashion. Each superconducting tape conductor has at least one superconducting layer. Each superconducting cable lacks an outer insulating layer and is held in a bundle of cables with each other superconducting cable of the plurality of superconducting cables. A sheath of non-conductive material covers the bundle of cables.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: March 9, 2021
    Assignee: Advanced Conductor Technologies LLC
    Inventor: Daniel Cornelis van der Laan
  • Patent number: 10937561
    Abstract: The present disclosure relates generally to wires and more particularly to textured powder wires containing nanoscale metallic silver powder. The invention presents an improvement of the process of making compressed cores of textured-powder high-temperature superconductor previously using the micaceous high-temperature superconductor Bi-2212. Embodiments of the claimed methods are useful with the micaceous high-temperature superconductors, notably Bi2Sr2CaCu208+x (Bi-2212) and Bi2Sr2Ca2Cu3O10+x (Bi-2223) and rare earth barium copper oxide (REBCO).
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: March 2, 2021
    Assignee: The Texas A&M University System
    Inventors: Nathaniel Pogue, Joshua N. Kellams, Peter McIntyre
  • Patent number: 10936756
    Abstract: A method of forming a superconducting structure is provided that includes forming a superconducting element in a first dielectric layer, forming a protective pad formed from a resistive material over at least a portion of the superconducting element, forming a second dielectric layer overlying the first dielectric layer, and etching an opening through the second dielectric layer to the protective pad, such that no portion of the superconducting element is exposed in the opening. A cleaning process is performed on the superconducting structure, and a contact material fill with a resistive material is performed to fill the opening and form a resistive element in contact with the superconducting element through the protective pad.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: March 2, 2021
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Cory Edward Sherman, Shawn A. Keebaugh, Reuben C. Ferguson
  • Patent number: 10932355
    Abstract: A high-current, compact, conduction cooled superconducting radio-frequency cryomodule for particle accelerators. The cryomodule will accelerate an electron beam of average current up to 1 ampere in continuous wave (CW) mode or at high duty factor. The cryomodule consists of a single-cell superconducting radio-frequency cavity made of high-purity niobium, with an inner coating of Nb3Sn and an outer coating of pure copper. Conduction cooling is achieved by using multiple closed-cycle refrigerators. Power is fed into the cavity by two coaxial couplers. Damping of the high-order modes is achieved by a warm beam-pipe ferrite damper.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: February 23, 2021
    Assignee: JEFFERSON SCIENCE ASSOCIATES, LLC
    Inventors: Gianluigi Ciovati, Thomas J. Schultheiss, John Rathke, Robert Rimmer, Frank Marhauser, Fay Hannon, Jiquan Guo
  • Patent number: 10930837
    Abstract: There is disclosed an assembly for carrying electrical current in a coil of a magnet. The assembly comprises a pre-formed housing of thermally and electrically conductive material (e.g. copper) which comprises a channel configured to retain HTS tape. A plurality of layers of HTS tape are fixed within the channel. The channel has at least one pre-formed curved section.
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: February 23, 2021
    Assignee: TOKAMAK ENERGY LTD
    Inventors: Martin Wilson, Paul Noonan
  • Patent number: 10923647
    Abstract: A method of manufacturing a superconducting tape includes forming a slurry of superconducting material, forming a slurry of sacrificial material, extruding the slurries of superconducting and sacrificial materials as interdigitated stripes onto a substrate, and removing the sacrificial material to form superconducting filaments.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: February 16, 2021
    Assignees: PALO ALTO RESEARCH CENTER INCORPORATED, ENERGY-TO-POWER SOLUTIONS (E2P)
    Inventors: Ranjeet Rao, Christopher Marek Rey
  • Patent number: 10920298
    Abstract: A steel plate having excellent resistance to fatigue crack growth and manufacturing method thereof, wherein the components of the steel plate in weight percentage are: 0.040-0.070% of C, 0.40-0.70% of Si, 1.30-1.60% of Mn, less than or equal to 0.013% of P, less than or equal to 0.003% of S, less than or equal to 0.30% of Cu, less than or equal to 0.30% of Ni, less than or equal to 0.10% of Mo, 0.008-0.018% of Ti, 0.015-0.030% of Nb, less than or equal to 0.0040% of N, 0.0010-0.0040% of Ca, and the balance being Fe and inevitable impurities. By controlling [% C]×[% Si] between 0.022-0.042, {([% C]+3.33[% Nb])×[% Si]}×Vcooling rate/Tcooling-stopping between 1.15×10?4˜2.2×10?3, carrying out a Ca treatment, and Ca/S=1.0-3.0 and (% Ca)×(% S) 0.28?1.0×10?3, the optimizing the TMCP process, the finished steel plate has a microstructure which a duplex-phase structure of ferrite+uniformly and dispersedly distributed bainite and has an improved resistance to fatigue crack growth.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: February 16, 2021
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Zicheng Liu, Qing Shi
  • Patent number: 10916361
    Abstract: An oxide superconductor according to an embodiment includes an oxide superconducting layer includes a single crystal having a continuous perovskite structure containing at least one rare earth element selected from the group consisting of yttrium, lanthanum, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, barium, and copper, containing praseodymium is a part of the site of the rare earth element in the perovskite structure, and having a molar ratio of praseodymium of 0.00000001 or more and 0.2 or less with respect to the sum of the at least one rare earth element and praseodymium; fluorine in an amount of 2.0×1015 atoms/cc or more and 5.0×1019 atoms/cc or less; and carbon in an amount of 1.0×1017 atoms/cc or more and 5.0×1020 atoms/cc or less.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: February 9, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mariko Hayashi, Takeshi Araki, Hiroyuki Fuke, Nao Kobayashi
  • Patent number: 10913989
    Abstract: The present invention relates to a method for leaching precious metals contained in a waste denitrification catalyst by using a pressure leaching process, and more specifically, to a method for leaching precious metals contained in a waste denitrification catalyst by using a pressure leaching process, the method comprising the steps of: forming a mixture by mixing a waste denitrification catalyst with a sodium salt solution; and leaching vanadium and tungsten contained in the mixture by feeding the mixture into a sealed pressurized reactor, and then heating and stirring the mixture.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: February 9, 2021
    Assignee: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Jin-Young Lee, Hoo-In Lee
  • Patent number: 10906806
    Abstract: The apparatus described herein comprises a first reaction chamber having an inlet for a hydrocarbon medium, particularly a gas having the composition CnHm, and an outlet. Means for decomposing the hydrocarbons into carbon particles and hydrogen by introducing heat are provided between the inlet and the outlet in the first reaction chamber. The apparatus also comprises a second reaction chamber having an elongated configuration and having a first inlet at one end and an outlet at the opposite end, wherein the first inlet of the second reaction chamber is connected with the outlet of the first reaction chamber, and wherein the second reaction chamber comprises a widening flow cross-section (measured perpendicular to the longitudinal dimension of the second reaction chamber) between the inlet and the outlet. In addition, at least one second inlet into the second reaction chamber is provided, wherein the second inlet can be connected to a source for CO2 and/or H2O.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: February 2, 2021
    Assignee: CAPHENIA GMBH
    Inventor: Olaf Kuhl
  • Patent number: 10907081
    Abstract: Provided is a group of rare-earth regenerator material particles having an average particle size of 0.01 to 3 mm, wherein the proportion of particles having a ratio of a long diameter to a short diameter of 2 or less is 90% or more by number, and the proportion of particles having a depressed portion having a length of 1/10 to ½ of a circumferential length on a particle surface is 30% or more by number. By forming the depressed portion on the surface of the regenerator material particles, it is possible to increase permeability of an operating medium gas and a contact surface area with the operating medium gas.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: February 2, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Patent number: 10910782
    Abstract: A method for bonding a first surface provided with at least one copper area surrounded by a silicon oxide area to a second surface includes an operation of treatment of the first surface by a plasma, before placing the first surface in contact with the second surface. The plasma is formed from a gas source containing a silicon oxide nitriding agent and a copper oxide reducing agent containing hydrogen. The gas source may include an N2 and NH3 and/or H2 gas mixture or a N2O and H2 gas mixture, or ammonia, which is then used both as a nitriding agent and as a reducing agent. The plasma obtained from this gas source then necessarily contains nitrogen and hydrogen, which enables, in a single operation, to provide a high-performance bonding between the first and second surfaces.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: February 2, 2021
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Laurent Vandroux, Léa Di Cioccio, Pierric Gueguen
  • Patent number: 10910132
    Abstract: The present invention is a superconducting wire including: a wire formed of a superconducting material; and a superconducting stabilization material disposed in contact with the wire, in which the superconducting stabilization material is formed of a copper material which contains: one or more types of additive elements selected from Ca, Sr, Ba, and rare earth elements in a total of 3 ppm by mass to 400 ppm by mass; a balance being Cu and inevitable impurities, and in which a total concentration of the inevitable impurities excluding O, H, C, N, and S which are gas components is 5 ppm by mass to 100 ppm by mass.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 2, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki