Patents Examined by Paul E. Konopka
  • Patent number: 5416054
    Abstract: Heavy oils may be hydrotreated in the presence of a porous alumina support bearing metals of Group VIII and VI-B and optionally phosphorus, the catalyst having a Total Surface Area of 165-230 m.sup.2 /g, a Total Pore Volume of 0.5-0.8 cc.g, and a Pore Diameter Distribution whereby less than about 5% the Total Pore Volume is present as primary micropores of diameter less than 80 .ANG., and secondary micropores of diameter of +20 .ANG. of a Pore Mode of 100-135 .ANG. are present in amount of at least about 65% of the micropore volume having pores with diameter less than 250 .ANG., and 22-29% of the Total Pore Volume is present as macropores of diameter >250 .ANG..The process of the instant invention is particularly effective in achieving desired levels of hydrodemetallation, hydrodesulfurization, and hydrocracking of asphaltenes in the fraction of hydrotreated/hydrocracked petroleum resid product having a boiling point greater than 1000.degree. F.
    Type: Grant
    Filed: February 25, 1993
    Date of Patent: May 16, 1995
    Assignee: Texaco Inc.
    Inventors: Pei-Shing E. Dai, Gerald V. Nelson, Govanon Nongbri, Roy E. Pratt, David E. Sherwood, Jr.
  • Patent number: 5414204
    Abstract: The improved method of treating activated carbon having an organochlorine compound adsorbed thereon which comprises adding water to said activated carbon and then exposing said activated carbon to ionizing radiation, thereby decomposing and rendering harmless the organochlorine compound adsorbed on the activated carbon is described. The method is capable of safe and efficient decomposition of the activated carbon that has been used in adsorption treatment of organochlorine compounds such as PCBs and trichloroethylene that have heretofore been difficult to treat. The activated carbon that has hitherto simply been accumulated to date after adsorbing organochlorine compounds can be effectively treated by the method at low cost.
    Type: Grant
    Filed: November 29, 1993
    Date of Patent: May 9, 1995
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Masakazu Hosono, Hidehiko Arai, Teijiro Miyata
  • Patent number: 5409872
    Abstract: A process and apparatus for fluidized catalytic cracking (FCC) with cooling of FCC catalyst during regeneration in a baffled heat exchanger attached to the regenerator. The heat exchanger has a vertical baffle defining an inlet and an outlet side. Lift gas added to the outlet side induces flow from the regenerator, around the baffle and back to the regenerator. A symmetrical design, with reversing flow can equalize wear on heat exchanger tubes and permit selected cooling if the heat exchanger outlet is near the regenerated catalyst outlet.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: April 25, 1995
    Assignee: Mobil Oil Corporation
    Inventor: Michael F. Raterman
  • Patent number: 5405814
    Abstract: An olefin hydration catalyst is regenerated with a non-oxidizing light gas, such as hydrogen. Light olefins, especially propylene, are converted to a mixture of alcohol(s), such as isopropanol (IPA) and ether(s), such as diisopropylether (DIPE) by contacting a feed containing the olefin with water and/or alcohol with the olefin hydration catalyst. Regeneration conditions include temperatures of from about 150.degree. C. to about 550.degree. C., pressures below about 1000 psig (6900 kPa). Lower pressures of regeneration unexpectedly demonstrated more effective catalyst regeneration through greater coke removal.
    Type: Grant
    Filed: June 7, 1993
    Date of Patent: April 11, 1995
    Assignee: Mobil Oil Corporation
    Inventors: James H. Beech, Jr., Weldon K. Bell, W. Thomas Mo, Hye Kyung C. Timken, Robert A. Ware
  • Patent number: 5403805
    Abstract: A ruthenium-based hydrogenation catalyst, particularly but not exclusively for hydrogenolysis under pressure of higher polyhydric alcohols, comprises ruthenium supported on granular activated carbon, and has:a specific surface area of from 600 to 1000 m.sup.2 /g;a total pore volume of from 0.5 to 1.2 cm.sup.3 /g;an apparent specific weight (bulk density) of from 0.45 to 0.55 g/cm.sup.3 ;an actual specific weight of from 1.9 to 2.3 g/cm.sup.3 ;a total volume of micropores having a radius smaller than 75 A of from 0.4 to 0.55 cm.sup.3 /g; andan ash content of from 2 to 5% by weight.The catalyst is used in a method for the continuous production of lower polyhydric alcohols in a fixed bed reactor, by means of hydrogenolysis under pressure of higher polyhydric alcohols.
    Type: Grant
    Filed: January 28, 1993
    Date of Patent: April 4, 1995
    Assignees: Montecatini Tecnologie S.r.l., Novamont S.p.A.
    Inventors: Giuseppe Gubitosa, Bruno Casale
  • Patent number: 5397458
    Abstract: A regeneration process and apparatus eliminates the need for an external chlorination recycle loop. The method and apparatus uses two-pass internal mixing of a chlorine compound input stream and drying gas to both mix and heat the chlorination gas before entering the chlorination zone. The only heat required for the process is a small amount for vaporizing the chlorine containing input stream to prevent the formation of chloride droplets. All other heat for the chlorination zone is supplied internally in the regeneration vessel.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: March 14, 1995
    Assignee: UOP
    Inventors: Frank T. Micklich, Paul A. Sechrist
  • Patent number: 5397756
    Abstract: For the impregnation into the pores of a hydrocarbon treatment catalyst of a sulfurizing agent chosen from element sulfur and organic polysulfides with the aid of a solvent, the impregnation process totally or partially comprises a constituent of the olefin or olefin fraction type, e.g., of the vegetable oil type, or a similar constituent. The use of such a constituent makes it possible to significantly reduce the exothermal effect which occurs during presulfurization, compared with the exothermal effects obtained without using such a constituent.
    Type: Grant
    Filed: April 1, 1993
    Date of Patent: March 14, 1995
    Assignee: Europeenne de Retraitement de Catalyseurs (EURECAT)
    Inventors: Pierre Dufresne, Bernard Legall, Georges Berrebi
  • Patent number: 5393717
    Abstract: There is provided a process for regenerating a coked catalyst comprising a zeolite and a noble metal such as platinum. The process involves treating the coked catalyst under somewhat mild oxidation conditions, whereby a sufficient portion of the coke is removed from the catalyst to restore the hydrocarbon sorption properties of the zeolite component to the level observed in the non-coked form. Surprisingly, the original activity of the catalyst is substantially restored, even though a substantial amount of coke remains on the regenerated catalyst.
    Type: Grant
    Filed: May 18, 1993
    Date of Patent: February 28, 1995
    Assignee: Mobil Oil Corp.
    Inventors: Minas R. Apelian, Anthony S. Fung, George H. Hatzikos, Clinton R. Kennedy, Chung-Hur Lee, Thomas R. Kiliany, Poh K. Ng, David A. Pappal
  • Patent number: 5391534
    Abstract: A process for preparing activated charcoal having a high surface area is described, including a thermal treatment, in the presence of phosphoric acid, of regenerated humic acids.
    Type: Grant
    Filed: November 2, 1993
    Date of Patent: February 21, 1995
    Assignee: Eniricerche S.p.A.
    Inventors: Angelo Carugati, Gastone Del Piero, Riccardo Rausa
  • Patent number: 5391530
    Abstract: The present invention relates to a process for the production of a catalyst for the removal of nitrogen oxides from waste gases, in which the end of the catalyst on the gas-inlet side is coated with a compound selected from the group consisting of biphosphates, condensed phosphates, silicates, borates and mixtures thereof, and is subjected to thermal aftertreatment, where the end of the green element on the gas-inlet side is immersed into an aqueous preparation comprising biphosphates and/or condensed phosphates and/or silicates and/or borates, and the green element is subsequently calcined at temperatures of from 300.degree. to 700.degree. C.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: February 21, 1995
    Assignee: Huels Aktiengesellschaft - PB15
    Inventors: Bernd Nowitzki, Jurgen Jung, Helmut Kretschmer
  • Patent number: 5391527
    Abstract: Catalytic composites of the reaction product of a metal halide having Friedel-Crafts activity with the bound surface hydroxyl group of inorganic oxides and containing a zerovalent metal with hydrogenation activity, often are effective catalysts in motor fuel alkylation which, however, undergo rapid deactivation. Deactivated catalysts are readily regenerable by treating the composite from which alkylate feedstock has been removed with hydrogen at temperatures in the range of 10.degree. to 300.degree. C. Multiple regenerations are possible without appreciable activity loss.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: February 21, 1995
    Assignee: UOP
    Inventors: Masami Kojima, Joseph A. Kocal
  • Patent number: 5391292
    Abstract: Disclosed is a method for starting up a cyclic or semi-cyclic reforming reactor after catalyst regeneration. The method mitigates disruptions to the reforming unit after catalyst regeneration, such as excessive light gas make and a decrease in recycle hydrogen purity.
    Type: Grant
    Filed: December 17, 1993
    Date of Patent: February 21, 1995
    Assignee: Exxon Research and Engineering Company
    Inventors: James J. Schorfheide, Albert E. Schweizer
  • Patent number: 5389350
    Abstract: Novel polyarylamide derived activated carbon materials are provided by a process comprising the carbonization of polyarylamide fibre at a temperature in excess or 400.degree. C. followed by activation at elevated temperature. The novel materials have the ability to adsorb relatively large quantities or carbon dioxide compared to other activated carbonized polymer materials, Preferably the carbonization and activation steps are carried out by raising the temperature of the materials to between 840.degree. C. and 880.degree. C. in carbonizing/activating atmospheres respectively.
    Type: Grant
    Filed: July 9, 1992
    Date of Patent: February 14, 1995
    Assignee: The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventors: John J. Freeman, Frederick G. R. Gimblett, Robert A. Hayes, Kenneth S. W. Sing
  • Patent number: 5389404
    Abstract: Progress for preparing a catalyst for hydrosilylation reactions which comprises reacting (A) a rhodium complex Rh(R.sub.2 S).sub.3 X.sub.3, in which R represents alkyl and other specified hydrocarbon groups and X represents Cl or Br with (B) an organohydrogen polysiloxane in the presence of (C) an organosiloxane having silicon-bonded vinyl or allyl groups. The ratio of silicon-bonded hydrogen atoms provided by (B) to each Rh atom provided by (B) is in the range from 0.5:1 to 6.0:1.The invention also includes the use of the catalyst for reacting .tbd.SiH with .tbd.Si Alkenyl especially in compositions for the treatment of substrates such as paper and plastics.
    Type: Grant
    Filed: August 19, 1993
    Date of Patent: February 14, 1995
    Assignee: Dow Corning S.A.
    Inventor: Stephen Armstrong
  • Patent number: 5389592
    Abstract: A method of enhancing the activity of a regenerated catalyst for the hydroprocessing of hydrocarbons comprising:(a) applying a modifying element dissolved in a solvent onto the surface of a regenerated catalyst;(b) drying said modified regenerated catalyst to remove all free solvent from said catalyst;(c) optionally, heating said dried modified regenerated catalyst at temperature of about 120.degree. C. to about 1000.degree. C. at a rate of 1.degree.-20.degree. C. per minute, and holding said dried catalyst at a temperature of about 120.degree. C. to about 1000.degree. C. up to 48 hours to provide an enhanced regenerated catalyst; and(d) recovering said enhanced regenerated catalyst.
    Type: Grant
    Filed: October 15, 1993
    Date of Patent: February 14, 1995
    Assignee: Texaco Inc.
    Inventors: Jeffrey G. Weissman, Elaine C. Decanio, Max R. Cesar
  • Patent number: 5389138
    Abstract: A food-safe composition for the pretreatment of a surface, preferably an oven or a broiler, which may be subjected to heat is liable to soiling by organic food deposits, especially baked-on food deposits.
    Type: Grant
    Filed: March 31, 1993
    Date of Patent: February 14, 1995
    Assignee: Kay Chemical Company
    Inventor: David R. Harry, Jr.
  • Patent number: 5385875
    Abstract: A concentrated catalyst solution used in a carbonylation reaction in which methyl acetate or dimethyl ether is chemically bonded with carbon monoxide in the presence of a catalyst system comprising a rhodium compound and an alkali metal iodide to produce acetic anhydride is subjected to a carbonylation treatment with carbon monoxide, or a mixture of carbon monoxide and hydrogen, before it is applied to a process for separating the tar contained in the catalyst solution, thereby increasing the iodide ion content of the catalyst solution and enabling the rhodium compound to be stabilized.The balances between the rhodium concentration, the alkali metal concentration and the iodine concentration of the carbonylation reaction system are not disturbed, even when the catalyst solution as reprocessed is returned to the carbonylation reaction system.
    Type: Grant
    Filed: January 24, 1994
    Date of Patent: January 31, 1995
    Assignee: Daicel Chemical Industries, Ltd.
    Inventor: Hiroto Tanigawa
  • Patent number: 5385876
    Abstract: A highly microporous adsorbent material is formed as a composite of a natural or synthetic clay or clay-like mineral matrix intercalated with an active carbon. The mineral is prepared and selected to have a selected interlayer spacing between microcrystalline sheets. An organic polymeric precursor is contacted therewith to fill the matrix interstices. Then the precursor is polymerized and carbonized to yield the adsorbent material in which the carbon is intercalated into the mineral matrix. The mineral can be naturally occurring smectite or synthetic hydrotalcite.
    Type: Grant
    Filed: January 27, 1993
    Date of Patent: January 31, 1995
    Assignee: Syracuse University
    Inventors: James A. Schwarz, Karol Putyera, Jacek Jagiello, Teresa J. Bandosz
  • Patent number: 5384302
    Abstract: A catalyst carrier that is comprised of relatively large alpha alumina particles dispersed in matrix that comprises an alpha alumina formed in situ by a sol-gel process has excellent crush resistance while retaining good porosity and catalytic performance.
    Type: Grant
    Filed: September 8, 1993
    Date of Patent: January 24, 1995
    Assignee: Norton Chemical Process Products Corp.
    Inventors: William H. Gerdes, Donald J. Remus, Thomas Szymanski, James A. Wolford
  • Patent number: 5382559
    Abstract: Process for preparing activated charcoal by means of the thermal treatment of potassium humates or humic acids, deriving from coal oxidation, in the presence of an activating agent.
    Type: Grant
    Filed: March 22, 1993
    Date of Patent: January 17, 1995
    Assignee: Eniricerche S.p.A.
    Inventors: Angelo Carugati, Gastone Del Piero, Riccardo Rausa