Patents Examined by Paul Patton
  • Patent number: 9484317
    Abstract: A system and method for preventing cracks in a passivation layer is provided. In an embodiment a contact pad has a first diameter and an opening through the passivation layer has a second diameter, wherein the first diameter is greater than the second diameter by a first distance of about 10 ?m. In another embodiment, an underbump metallization is formed through the opening, and the underbump metallization has a third diameter that is greater than the first diameter by a second distance of about 5 ?m. In yet another embodiment, a sum of the first distance and the second distance is greater than about 15 ?m. In another embodiment the underbump metallization has a first dimension that is less than a dimension of the contact pad and a second dimension that is greater than a dimension of the contact pad.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: November 1, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Chen, Yen-Liang Lin, Tin-Hao Kuo, Sheng-Yu Wu, Chen-Shien Chen
  • Patent number: 9484298
    Abstract: A non-volatile memory device includes a first electrode layer extending in a first direction and a first channel body extending through the first electrode layer in a second direction. The first electrode layer has, on a side surface, a first projecting portion expanding in a third direction perpendicular to the first direction and the second direction, and having a rounding shape in a tip of the first projecting portion.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: November 1, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kotaro Noda, Tomohiro Yamada
  • Patent number: 9481564
    Abstract: The present disclosure relates to a MEMs substrate. In some embodiments, the MEMs substrate has a device substrate having a micro-electromechanical system (MEMs) device, and a layer of bonding material positioned over the device substrate at positions adjacent to the MEMs device. A cap substrate has a depression is disposed within a surface abutting the layer of bonding material. The depression within the cap substrate forms a chamber vertically disposed between the device substrate and the cap substrate and abutting the MEMs device. One or more pressure tuning channels are vertically disposed between the device substrate and the cap substrate and laterally extend outward from a sidewall of the chamber.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: November 1, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Kuei-Sung Chang
  • Patent number: 9478693
    Abstract: An optical module package includes a substrate having a recessed portion, a cover covered on the substrate and defining with the substrate a first chamber and a second chamber therebetween, the cover having a light-emitting hole disposed in communication with the first chamber, a light-receiving hole disposed in communication with the second chamber and a stop wall positioned in the recessed portion to separate the first chamber and the second chamber, a light-emitting chip and a light-receiving chip mounted at the substrate and respectively disposed in the first chamber and the second chamber, and two encapsulation colloids respectively mounted in the first chamber and the second chamber and respectively wrapped about the light-emitting chip and the light-receiving chip. Thus, the optical module package not only can prevent crosstalk but also can greatly reduce the manufacturing cost and the level of difficulty.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: October 25, 2016
    Assignee: LINGSEN PRECISION INDUSTRIES, LTD.
    Inventors: Ming-Te Tu, Yu-Chen Lin
  • Patent number: 9478647
    Abstract: A semiconductor device is configured such that the distance between the trench gate in the IGBT and the trench gate in the diode is reduced or a p-well layer is provided between the trench gate in the IGBT and the trench gate in the diode.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: October 25, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tetsuo Takahashi
  • Patent number: 9478495
    Abstract: A low-stress contact via structure for a device employing an alternating stack of insulating layers and electrically conductive layers over a substrate can be formed by forming a trench extending to the substrate through the alternating stack. After formation of an insulating spacer and a diffusion barrier layer, a remaining volume of the trench can be filled with a combination of an aluminum portion and a non-metallic material portion to form a contact via structure. The non-metallic material portion can include a semiconductor material portion or a dielectric material portion, and can prevent reflow of the aluminum portion and generation of a cavity in subsequent thermal processes. If a semiconductor material portion is employed, the aluminum portion and the semiconductor material portion can exchange places during a metal induced crystallization anneal process of the semiconductor material.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: October 25, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jayavel Pachamuthu, Peter Rabkin, Jilin Xia, Christopher Petti
  • Patent number: 9472440
    Abstract: A plurality of inserts adapted are to be received in a plurality of holes in a support plate having a first surface adapted to engage a first surface of an integrated cicuirt IC package strip. The support plate has a plurality of holes in fluid communication with a vacuum source and are constructed from a first material having a first hardness. The plurality of inserts are constructed from a second material having a second hardness less than said first hardness.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: October 18, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Joseph Cruz Yutuc, Leody Navarro Olivares
  • Patent number: 9472395
    Abstract: In accordance with a method of manufacturing a semiconductor arrangement, a first trench is formed into a semiconductor body from a first side. An anodic oxide structure is formed at a bottom side of the first trench by immersing the semiconductor body in an electrolyte and applying an anodizing voltage between the semiconductor body and an electrode in contact with the electrolyte.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: October 18, 2016
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Ingo Muri, Iris Moder
  • Patent number: 9472667
    Abstract: Embodiments include a method for fabricating a semiconductor device and the resulting structure comprising forming a semi-insulating bottom barrier on a semiconductor substrate. A channel is formed on the bottom barrier. A semi-insulating layer is epitaxially formed on the bottom barrier, laterally adjacent to the channel. The semi-insulating layer is formed in such a way that stress is induced onto the channel. A CMOS transistor is formed on the channel.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: October 18, 2016
    Assignee: International Business Machines Corporation
    Inventors: Anirban Basu, Guy Cohen, Amlan Majumdar
  • Patent number: 9472521
    Abstract: A system and method for preventing cracks in a passivation layer is provided. In an embodiment a contact pad has a first diameter and an opening through the passivation layer has a second diameter, wherein the first diameter is greater than the second diameter by a first distance of about 10 ?m. In another embodiment, an underbump metallization is formed through the opening, and the underbump metallization has a third diameter that is greater than the first diameter by a second distance of about 5 ?m. In yet another embodiment, a sum of the first distance and the second distance is greater than about 15 ?m.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: October 18, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Chun Chuang, Chita Chuang, Hao-Juin Liu, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 9466664
    Abstract: Methods and structures for forming uniaxially-strained, nanoscale, semiconductor bars from a biaxially-strained semiconductor layer are described. A spatially-doubled mandrel process may be used to form a mask for patterning dense, narrow trenches through the biaxially-strained semiconductor layer. The resulting slicing of the biaxially-strained layer enhances carrier mobility and can increase device performance.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: October 11, 2016
    Assignees: STMICROELECTRONICS, INC., COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, GLOBALFOUNDRIES INC.
    Inventors: Pierre Morin, Maud Vinet, Laurent Grenouillet, Ajey Poovannummoottil Jacob
  • Patent number: 9466632
    Abstract: Disclosed are an image sensor package and an image sensor module having the same. A diffusion resistor is provided on a circuit board for preventing liquid drop diffusion when the liquid drop is compressed. An image sensor chip is mounted on the circuit board such that a central portion of the image sensor chip is positioned on the diffusion resistor of the circuit board. A bonding member is interposed between the circuit board and the image sensor chip around the diffusion resistor such that a bonding area of the image sensor chip is smaller than a surface area of a bonding face of the image sensor chip. Warpage characteristics of the image sensor package are improved by the diffusion resistor.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: October 11, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Ok-Gyeong Park
  • Patent number: 9466690
    Abstract: After forming trenches extending through a dielectric material stack including, from bottom to top, a first dielectric layer, a second dielectric layer and a third dielectric layer that is located over a semiconductor substrate, a fin stack of, from bottom to top, an insulating III-V compound material fin portion and a III-V compound semiconductor fin is formed within each trench. The third dielectric layer is removed to expose a first portion of each III-V compound semiconductor fin. After forming a sidewall spacer on sidewalls of the first portion of each III-V compound semiconductor fin, the second dielectric layer is removed to expose a second portion of each III-V compound semiconductor fin. The exposed second portion of each III-V compound semiconductor fin is removed. The remaining first portion of each III-V compound semiconductor fin constitutes an active portion over which a FinFET is subsequently formed.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: October 11, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karthik Balakrishnan, Kangguo Cheng, Pouya Hashemi, Alexander Reznicek
  • Patent number: 9461174
    Abstract: A substrate layer formed of a first semiconductor material includes adjacent first and second regions. Fin structures are formed from the substrate layer in both the first and second regions. At least the side walls of the fin structures in the second region are covered with an epitaxially grown layer of second semiconductor material. A drive in process is performed to convert the fin structures in the second region from the first semiconductor material to the second semiconductor material. The first semiconductor material is, for example, silicon, and the second semiconductor material is, for example, silicon germanium or silicon carbide. The fin structures in the first region are provided for a FinFET of a first (for example, n-channel) conductivity type while the fin structures in the second region are provided for a FinFET of a second (for example, p-channel) conductivity type.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: October 4, 2016
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Nicolas Loubet, Hong He, James Kuss
  • Patent number: 9455224
    Abstract: Techniques are disclosed that enable improved shorting margin between unlanded conductive interconnect features and neighboring conductive features. In some embodiments, an etch may be applied to an insulator layer having one or more conductive features therein, such that the insulator layer is recessed below the top of the conductive features and the edges of the conductive features are rounded or otherwise softened. A conformal etchstop layer may then be deposited over the conductive features and the insulator material. A second insulator layer may be deposited above the conformal etchstop layer, and an interconnect feature may pass through the second insulator layer and the conformal etchstop layer to connect with the rounded portion of one of the conductive features. In some embodiments, the interconnect feature is an unlanded via and the unlanded portion of the via may or may not penetrate through the conformal barrier layer.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 27, 2016
    Assignee: Intel Corporation
    Inventors: Boyan Boyanov, Kanwal Jit Singh, James Clarke, Alan Myers
  • Patent number: 9455314
    Abstract: A semiconductor structure is provided that includes at least one punch-through stop base structure having concave outermost sidewalls and located on a semiconductor surface of a semiconductor substrate. The structure further includes a pair of semiconductor fins extending upwards from a topmost surface of the at least one punch through stop base structure. The structure even further includes a trench isolation structure located laterally adjacent each of the concave outermost sidewalls of the at least one punch-through stop base structure, wherein a dopant source dielectric material liner is located on each of the concave outermost sidewalls of the at least one punch-through stop base structure and is present between the at least one punch-through stop base structure and the trench isolation structure.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: September 27, 2016
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Juntao Li
  • Patent number: 9450094
    Abstract: A semiconductor process includes the following steps. A fin on a substrate is provided. Spacers are formed only on sidewalls of the fin, where a top surface of the fin is higher than or equal to top surfaces of the spacers. An epitaxial structure is formed on the fin. The present invention also provides a fin-shaped field effect transistor including a fin, spacers and an epitaxial structure. The fin is located on a substrate. The spacers are disposed only on sidewalls of the fin, where a top surface of the fin is higher than or equal to top surfaces of the spacers. The epitaxial structure is disposed on the fin.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: September 20, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chieh Yeh, Kai-Lin Lee
  • Patent number: 9450046
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate and a fin structure formed over the substrate. The semiconductor structure further includes a first wire structure formed over the fin structure and a source structure and a drain structure formed at two opposite sides of the fin structure. The semiconductor structure further includes a gate structure formed over the fin structure. In addition, the fin structure and the first wire structure are separated by the gate structure.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: September 20, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Tsung-Yao Wen, Sai-Hooi Yeong, Bo-Yu Lai, Sheng-Chen Wang
  • Patent number: 9443868
    Abstract: According to an embodiment, a semiconductor memory device comprises: a memory string comprising memory cells; and a contact electrically connected to one end of the memory string. The memory string comprises: control gate electrodes stacked above a first semiconductor layer; a second semiconductor layer having one end connected to the first semiconductor layer and having as its longitudinal direction a direction perpendicular to the first semiconductor layer, the second semiconductor layer facing the control gate electrodes; and a charge accumulation layer positioned between the control gate electrode and the second semiconductor layer. The contact has a plate-like shape whose longitudinal direction is a first direction, the contact has its lower surface connected to the first semiconductor layer, and the contact has a height of at least part of its upper surface lower than a height of an upper surface of the second semiconductor layer.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: September 13, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Ming Hu, Toshiyuki Takewaki, Masahisa Sonoda
  • Patent number: 9443934
    Abstract: To provide a transistor having high field effect mobility. To provide a transistor having stable electrical characteristics. To provide a transistor having low off-state current (current in an off state). To provide a semiconductor device including the transistor. The semiconductor device includes a semiconductor; a source electrode and a drain electrode including regions in contact with a top surface and side surfaces of the semiconductor; a gate insulating film including a region in contact with the semiconductor; and a gate electrode including a region facing the semiconductor with the gate insulating film provided therebetween. A length of a region of the semiconductor, which is not in contact with the source and drain electrodes, is shorter than a length of a region of the semiconductor, which is in contact with the source and drain electrodes, in a channel width direction.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: September 13, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiyuki Kobayashi, Daisuke Matsubayashi