Patents Examined by Pegah Parvini
  • Patent number: 11975409
    Abstract: In one aspect, cutting tools are provided comprising radiation ablation regions defining at least one of refractory surface microstructures and/or nanostructures. For example, a cutting tool described herein comprises at least one cutting edge formed by intersection of a flank face and a rake face, the flank face formed of a refractory material comprising radiation ablation regions defining at least one of surface microstructures and surface nanostructures, wherein surface pore structure of the refractory material is not occluded by the surface microstructures and surface nanostructures.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: May 7, 2024
    Assignee: KENNAMETAL INC.
    Inventors: Naveen Kondameedi, Fabian Rosenberger, Christoph Gey
  • Patent number: 11969860
    Abstract: An embodiment of a PCD insert comprises an embodiment of a PCD element joined to a cemented carbide substrate at an interface. The PCD element has internal diamond surfaces defining interstices between them. The PCD element comprises a masked or passivated region and an unmasked or unpassivated region, the unmasked or unpassivated region defining a boundary with the substrate, the boundary being the interface. At least some of the internal diamond surfaces of the masked or passivated region contact a mask or passivation medium, and some or all of the interstices of the masked or passivated region and of the unmasked or unpassivated region are at least partially filled with an infiltrant material.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: April 30, 2024
    Assignees: Element Six Limited, Baker Hughes Incorporated
    Inventors: John Hewitt Liversage, Danny Eugene Scott, Humphrey Samkelo Lungisani Sithebe, Kaveshini Naidoo, Bronwyn Annette Kaiser, Michael Lester Fish
  • Patent number: 11965103
    Abstract: A formulation, system, and method for additive manufacturing of a polishing pad. The formulation includes monomer, dispersant, and nanoparticles. A method of preparing the formulation includes adding a dispersant that is a polyester derivative to monomer, adding metal-oxide nanoparticles to the monomer, and subjecting the monomer having the nanoparticles and dispersant to sonication to disperse the nanoparticles in the monomer.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Daihua Zhang, Uma Sridhar, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan
  • Patent number: 11945944
    Abstract: The disclosure relates to a curable composition comprising: a polymerizable epoxy-acrylate resin composition having a complex viscosity at 25° C. and 1 Hz frequency of at least about 4500 Pa-s and a probe tack peak force of at least about 300 kPa; and abrasive particles partially or fully embedded in the polymerizable epoxy-acrylate resin composition. The disclosure also relates to cured compositions formed from such curable compositions, wherein the abrasive particles are partially or fully embedded in the cured composition. In addition, the disclosure relates to abrasive articles made from such cured compositions as well as methods for making abrasive articles.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: April 2, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Kathleen S. Shafer, Rebecca A. Putans, Ernest L. Thurber, Cyrus A. Anderson, Corinne E. Lipscomb, Thomas J. Nelson, Gregory P. Sorenson, Chainika Jangu
  • Patent number: 11945076
    Abstract: An article (100) has a polyester film backing (110) and a primer layer (120) including a carboxylated styrene butadiene copolymer crosslinked with a polyfunctional aziridine disposed on a major surface of the polyester film backing (110). Another article includes a polyester backing (110), a primer layer (120) including a carboxylated styrene butadiene copolymer crosslinked with a polyfunctional aziridine disposed on a major surface of the polyester backing (110), and a phenolic layer (140) disposed on the primer layer (120) on a surface opposite the polyester backing (110). The phenolic layer (120) can include abrasive particles (160). Processes for making the articles are also described, as well as methods for abrading a workpiece and improving adhesion between a polyester film backing (110) and a phenolic layer (120) on the polyester backing (110).
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 2, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Amelia W. Koenig, Liming Song, Stephen M. Sanocki, Yu Yang, Yaohua Gao, Aniruddha A. Upadhye, Morgan A. Priolo, Saurabh Batra, Angela S. McLean
  • Patent number: 11946320
    Abstract: Polycrystalline diamond may include a working surface and a peripheral surface extending around an outer periphery of the working surface. The polycrystalline diamond includes a first volume including an interstitial material and a second volume having a leached region that includes boron and titanium. A method of fabricating a polycrystalline diamond element may include positioning a first volume of diamond particles adjacent to a substrate, the first volume of diamond particles including a material that includes a group 13 element, and positioning a second volume of diamond particles adjacent to the first volume of diamond particles such that the first volume of diamond particles is disposed between the second volume of diamond particles and the substrate, the second volume of diamond particles having a lower concentration of material including the group 13 element than the first volume of diamond particles.
    Type: Grant
    Filed: January 9, 2021
    Date of Patent: April 2, 2024
    Assignee: US Synthetic Corporation
    Inventors: Daren Nathaniel Heaton, Jeremy Brett Lynn
  • Patent number: 11932580
    Abstract: A bonded abrasive article includes elongate shaped abrasive particles. The elongate shaped abrasive particles comprise an elongate shaped ceramic body having opposed first and second ends joined to each other by at least two longitudinal sidewalls. At least one of the at least two longitudinal sidewalls is concave along its length. At least one of the first and second ends is a fractured surface.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: March 19, 2024
    Assignee: 3M Innovative Properties Company
    Inventor: Dwight D. Erickson
  • Patent number: 11926019
    Abstract: A coated abrasive article includes a substrate and a plurality of abrasive particles overlying the substrate, and the plurality of abrasive particles including tapered abrasive particles having a taper fraction standard deviation of at least 0.025 and not greater than 0.090.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: March 12, 2024
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Samuel S. Marlin, Ralph Bauer, Stefan Vujcic, Paul W. Rehrig, Marie-Camille Auscher, Darrell K. Everts, Hua Fan, Sujatha K. Iyengar, Christopher Arcona, Anthony Martone, Brahmanandam V. Tanikella
  • Patent number: 11904427
    Abstract: A method of manufacturing a rotary abrasive machining tool, the rotary abrasive machining tool including a hub and a plurality of abrasive segments mounted to the hub, the method including the steps of: mounting each abrasive segment on the hub; machining an abrading edge on each abrasive segment while the abrasive segment is mounted on the hub.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 20, 2024
    Assignee: ROLLS-ROYCE plc
    Inventors: Donka Novovic, Dragos A Axinte, Alessio Spampinato
  • Patent number: 11898041
    Abstract: A pigment, including a flake including a metal core having a first surface and a second surface, a first dielectric layer interfacing with a first surface of the metal core, and a second dielectric layer interfacing with a second surface of the metal core; a first inorganic layer encapsulating the flake; and an organic layer encapsulating the first organic layer is disclosed. A colorant composition including the pigment is also disclosed. A method of making the pigment, and a method of making a colorant composition are also disclosed.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: February 13, 2024
    Assignee: VIAVI SOLUTIONS INC.
    Inventor: Alberto Argoitia
  • Patent number: 11865673
    Abstract: The disclosure relates to layers comprising a body having a thickness, T, comprising a curable composition comprising a polymerizable epoxy-acrylate resin composition and abrasive particles at least partially embedded in the polymerizable epoxy-acrylate resin composition, wherein the body includes a plurality of void spaces free of the curable composition extending into the body from the first major surface and the depth of the plurality of void spaces is at least 10 percent of thickness T. The disclosure also relates to cured compositions formed from such curable compositions and, in turn, abrasive articles made from such cured compositions as well as methods for making abrasive articles.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: January 9, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Chainika Jangu, Michael J. Annen, Deborah J. Eilers, David M. Mahli, Caroline E. Morel, Kathleen S. Shafer, Gregory P. Sorenson
  • Patent number: 11858093
    Abstract: The present application relates to a composite binding agent grinding wheel, wherein a weight percentage of each raw material of the grinding wheel is: 45-65% of pretreatment abrasive, 8-20% of resin bonding agent, 5-12% of hexagonal boron nitride, 5-10% of silicon dioxide, 5-15% of ceramic powder, 6-12% of prealloy powder bonding agent, and 1-3% of boron powder. The composite binding agent super-hard grinding wheel prepared by the present application can achieve nano-level grinding surface quality when grinding epitaxial wafers, and the grinding wheel has strong self-sharpening and high sharpness. It has obvious advantages in the finishing of silicon carbide crystal epitaxial wafers, which can solve the current limitations of back thinning processing of silicon carbide crystal epitaxial wafers.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: January 2, 2024
    Assignee: ZHENGZHOU RESEARCH INSTITUTE FOR ABRASIVES & GRINDING CO., LTD.
    Inventors: Yanjun Zhao, Lihua Wang, Gaoliang Zhang, Guanwen Qian, Donghua Zuo, Jianfeng Cao, Guannan Sun
  • Patent number: 11850706
    Abstract: An abrasive tool, including an abrasive carrier (1) having a shaft (2) for connecting the abrasive carrier (1) to a driving device for rotatably driving the abrasive carrier (1) about a longitudinal axis (X) and having a core (3) connected to an axial end (4) of the shaft (2), and an abrasive article (15) having a surface (16) being circumferentially closed about the longitudinal axis (X) and enclosing a cavity (17) extending along the longitudinal axis (X), wherein the core (3) is accommodated at least partially in the cavity (17), and wherein the core (3) includes a material mixture which includes a plastic with a heat-conductive filler, wherein the plastic is foamed, and wherein the filler has a thermal conductivity greater than 35 watts per meter and per Kelvin.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: December 26, 2023
    Assignee: LUKAS-ERZETT VEREINIGTE SCHLEIF- UND FRASWERKZEUGFABRIKEN GmbH & CO. KG
    Inventors: Gerd Fischer, Bernhard Runden, Sebastian Schwark
  • Patent number: 11826883
    Abstract: Various embodiments disclosed relate to an abrasive article. The abrasive article includes a first major surface and an opposed second major surface. Each major surface contacts a peripheral side surface. A central axis extends through the first and second major surfaces. A first layer of abrasive particles is dispersed within the abrasive article according to a first predetermined pattern. Further a second layer of abrasive particles spaced apart from the first layer of abrasive particles and is dispersed within the abrasive article along a according to a second predetermined pattern. A binder material retains the first and second layers of abrasive particles in the abrasive article. A portion of the binder material is located between the first and second layers of abrasive particles. That portion of the binder material is substantially continuous.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: November 28, 2023
    Assignee: Innovative Properties Company
    Inventors: Maria C. Castillo, Aaron K. Nienaber, Joseph B. Eckel, Maiken Givot
  • Patent number: 11819979
    Abstract: An abrasive tool has an abrasive grain layer comprising a plurality of hard abrasive grains bonded by a binder, with a plurality of the hard abrasive grains each having a working surface formed to contact a workpiece, a ratio of a total area of a plurality of such working surfaces to an area of an imaginary plane smoothly connecting the plurality of working surfaces being 5% or more and 30% or less.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: November 21, 2023
    Assignee: A.L.M.T. Corp.
    Inventor: Sadateru Nakamatsu
  • Patent number: 11806840
    Abstract: An abrasive article can include an abrasive component including a body. The body can include a bond matrix and abrasive particles contained in the bond matrix. In an embodiment, the body can include an interconnected phase extending through at least a portion of the bond matrix. The body can include a discontinuous phase including a plurality of discrete members. At least one of the discrete member can include a macroscopic pore. In another embodiment, the body can include a porosity of at least 15 vol % for a total volume of the body.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: November 7, 2023
    Assignees: SAINT-GOBAIN ABRASIVES, INC., SAINT-GOBAIN ABRASIFS
    Inventors: Ji Xiao, Aiyun Luo, Gwenaëlle Ringenbach, Ignazio Gosamo, Lise Lauvergeon
  • Patent number: 11807920
    Abstract: A method of forming a supporting substrate for a cutting element comprises forming a precursor composition comprising discrete WC particles, a binding agent, and discrete particles comprising Co, one or more of Al, Be, Ga, Ge, Si, and Sn, and one or more of C and W. The precursor composition is subjected to a consolidation process to form a consolidated structure including WC particles dispersed in a homogenized binder comprising Co, W, C, and one or more of Al, Be, Ga, Ge, Si, and Sn. A method of forming a cutting element, a cutting element, a related structure, and an earth-boring tool are also described.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: November 7, 2023
    Assignee: Baker Hughes Holdings LLC
    Inventors: Wanjun Cao, Marc W. Bird
  • Patent number: 11802210
    Abstract: A thin film structure including a reflector layer; and a hybrid layer including an organic colored material and at least one of an organic filler and an inorganic filler; wherein a concentration of the at least one of an organic filler or an inorganic filler is in a range of from about 3 wt. % to about 30 wt. %. A method of making a thin film structure is also disclosed.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: October 31, 2023
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Vladimir Raksha, Joe Garcia, Paul Kohlmann, Alberto Argoitia, Carole Thoraval, Robert Oberti
  • Patent number: 11794245
    Abstract: A super hard polycrystalline construction is disclosed as comprising a body of super hard material having a first fraction of super hard grains in a matrix of a second fraction of super hard grains. The average grain size of the first fraction is between around 1.5 to around 10 times the average grain size of the second fraction and the first fraction comprises around 5 vol % to around 30 vol % of the grains of super hard material in the body.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: October 24, 2023
    Assignee: Element Six (UK) Limited
    Inventors: Maweja Kasonde, Teresa Rodriguez Suarez, Amanda Lynne Mckie, Edwin Stewart Eardley
  • Patent number: 11780778
    Abstract: Provided is a polycrystalline diamond cutter with a substrate and a diamond body in which the diamond body includes bonded diamond particles and discernable diamondene fragments. The polycrystalline diamond cutter is manufactured by a high pressure high temperature method that includes sintering a diamond feed layer in which the diamond feed layer includes diamond particles and diamondene fragments.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: October 10, 2023
    Assignee: DIAMOND INNOVATIONS, INC.
    Inventor: Gary Flood