Patents Examined by Pegah Parvini
  • Patent number: 11926019
    Abstract: A coated abrasive article includes a substrate and a plurality of abrasive particles overlying the substrate, and the plurality of abrasive particles including tapered abrasive particles having a taper fraction standard deviation of at least 0.025 and not greater than 0.090.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: March 12, 2024
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Samuel S. Marlin, Ralph Bauer, Stefan Vujcic, Paul W. Rehrig, Marie-Camille Auscher, Darrell K. Everts, Hua Fan, Sujatha K. Iyengar, Christopher Arcona, Anthony Martone, Brahmanandam V. Tanikella
  • Patent number: 11904427
    Abstract: A method of manufacturing a rotary abrasive machining tool, the rotary abrasive machining tool including a hub and a plurality of abrasive segments mounted to the hub, the method including the steps of: mounting each abrasive segment on the hub; machining an abrading edge on each abrasive segment while the abrasive segment is mounted on the hub.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 20, 2024
    Assignee: ROLLS-ROYCE plc
    Inventors: Donka Novovic, Dragos A Axinte, Alessio Spampinato
  • Patent number: 11898041
    Abstract: A pigment, including a flake including a metal core having a first surface and a second surface, a first dielectric layer interfacing with a first surface of the metal core, and a second dielectric layer interfacing with a second surface of the metal core; a first inorganic layer encapsulating the flake; and an organic layer encapsulating the first organic layer is disclosed. A colorant composition including the pigment is also disclosed. A method of making the pigment, and a method of making a colorant composition are also disclosed.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: February 13, 2024
    Assignee: VIAVI SOLUTIONS INC.
    Inventor: Alberto Argoitia
  • Patent number: 11865673
    Abstract: The disclosure relates to layers comprising a body having a thickness, T, comprising a curable composition comprising a polymerizable epoxy-acrylate resin composition and abrasive particles at least partially embedded in the polymerizable epoxy-acrylate resin composition, wherein the body includes a plurality of void spaces free of the curable composition extending into the body from the first major surface and the depth of the plurality of void spaces is at least 10 percent of thickness T. The disclosure also relates to cured compositions formed from such curable compositions and, in turn, abrasive articles made from such cured compositions as well as methods for making abrasive articles.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: January 9, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Chainika Jangu, Michael J. Annen, Deborah J. Eilers, David M. Mahli, Caroline E. Morel, Kathleen S. Shafer, Gregory P. Sorenson
  • Patent number: 11858093
    Abstract: The present application relates to a composite binding agent grinding wheel, wherein a weight percentage of each raw material of the grinding wheel is: 45-65% of pretreatment abrasive, 8-20% of resin bonding agent, 5-12% of hexagonal boron nitride, 5-10% of silicon dioxide, 5-15% of ceramic powder, 6-12% of prealloy powder bonding agent, and 1-3% of boron powder. The composite binding agent super-hard grinding wheel prepared by the present application can achieve nano-level grinding surface quality when grinding epitaxial wafers, and the grinding wheel has strong self-sharpening and high sharpness. It has obvious advantages in the finishing of silicon carbide crystal epitaxial wafers, which can solve the current limitations of back thinning processing of silicon carbide crystal epitaxial wafers.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: January 2, 2024
    Assignee: ZHENGZHOU RESEARCH INSTITUTE FOR ABRASIVES & GRINDING CO., LTD.
    Inventors: Yanjun Zhao, Lihua Wang, Gaoliang Zhang, Guanwen Qian, Donghua Zuo, Jianfeng Cao, Guannan Sun
  • Patent number: 11850706
    Abstract: An abrasive tool, including an abrasive carrier (1) having a shaft (2) for connecting the abrasive carrier (1) to a driving device for rotatably driving the abrasive carrier (1) about a longitudinal axis (X) and having a core (3) connected to an axial end (4) of the shaft (2), and an abrasive article (15) having a surface (16) being circumferentially closed about the longitudinal axis (X) and enclosing a cavity (17) extending along the longitudinal axis (X), wherein the core (3) is accommodated at least partially in the cavity (17), and wherein the core (3) includes a material mixture which includes a plastic with a heat-conductive filler, wherein the plastic is foamed, and wherein the filler has a thermal conductivity greater than 35 watts per meter and per Kelvin.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: December 26, 2023
    Assignee: LUKAS-ERZETT VEREINIGTE SCHLEIF- UND FRASWERKZEUGFABRIKEN GmbH & CO. KG
    Inventors: Gerd Fischer, Bernhard Runden, Sebastian Schwark
  • Patent number: 11826883
    Abstract: Various embodiments disclosed relate to an abrasive article. The abrasive article includes a first major surface and an opposed second major surface. Each major surface contacts a peripheral side surface. A central axis extends through the first and second major surfaces. A first layer of abrasive particles is dispersed within the abrasive article according to a first predetermined pattern. Further a second layer of abrasive particles spaced apart from the first layer of abrasive particles and is dispersed within the abrasive article along a according to a second predetermined pattern. A binder material retains the first and second layers of abrasive particles in the abrasive article. A portion of the binder material is located between the first and second layers of abrasive particles. That portion of the binder material is substantially continuous.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: November 28, 2023
    Assignee: Innovative Properties Company
    Inventors: Maria C. Castillo, Aaron K. Nienaber, Joseph B. Eckel, Maiken Givot
  • Patent number: 11819979
    Abstract: An abrasive tool has an abrasive grain layer comprising a plurality of hard abrasive grains bonded by a binder, with a plurality of the hard abrasive grains each having a working surface formed to contact a workpiece, a ratio of a total area of a plurality of such working surfaces to an area of an imaginary plane smoothly connecting the plurality of working surfaces being 5% or more and 30% or less.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: November 21, 2023
    Assignee: A.L.M.T. Corp.
    Inventor: Sadateru Nakamatsu
  • Patent number: 11807920
    Abstract: A method of forming a supporting substrate for a cutting element comprises forming a precursor composition comprising discrete WC particles, a binding agent, and discrete particles comprising Co, one or more of Al, Be, Ga, Ge, Si, and Sn, and one or more of C and W. The precursor composition is subjected to a consolidation process to form a consolidated structure including WC particles dispersed in a homogenized binder comprising Co, W, C, and one or more of Al, Be, Ga, Ge, Si, and Sn. A method of forming a cutting element, a cutting element, a related structure, and an earth-boring tool are also described.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: November 7, 2023
    Assignee: Baker Hughes Holdings LLC
    Inventors: Wanjun Cao, Marc W. Bird
  • Patent number: 11806840
    Abstract: An abrasive article can include an abrasive component including a body. The body can include a bond matrix and abrasive particles contained in the bond matrix. In an embodiment, the body can include an interconnected phase extending through at least a portion of the bond matrix. The body can include a discontinuous phase including a plurality of discrete members. At least one of the discrete member can include a macroscopic pore. In another embodiment, the body can include a porosity of at least 15 vol % for a total volume of the body.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: November 7, 2023
    Assignees: SAINT-GOBAIN ABRASIVES, INC., SAINT-GOBAIN ABRASIFS
    Inventors: Ji Xiao, Aiyun Luo, Gwenaëlle Ringenbach, Ignazio Gosamo, Lise Lauvergeon
  • Patent number: 11802210
    Abstract: A thin film structure including a reflector layer; and a hybrid layer including an organic colored material and at least one of an organic filler and an inorganic filler; wherein a concentration of the at least one of an organic filler or an inorganic filler is in a range of from about 3 wt. % to about 30 wt. %. A method of making a thin film structure is also disclosed.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: October 31, 2023
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Vladimir Raksha, Joe Garcia, Paul Kohlmann, Alberto Argoitia, Carole Thoraval, Robert Oberti
  • Patent number: 11794245
    Abstract: A super hard polycrystalline construction is disclosed as comprising a body of super hard material having a first fraction of super hard grains in a matrix of a second fraction of super hard grains. The average grain size of the first fraction is between around 1.5 to around 10 times the average grain size of the second fraction and the first fraction comprises around 5 vol % to around 30 vol % of the grains of super hard material in the body.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: October 24, 2023
    Assignee: Element Six (UK) Limited
    Inventors: Maweja Kasonde, Teresa Rodriguez Suarez, Amanda Lynne Mckie, Edwin Stewart Eardley
  • Patent number: 11780778
    Abstract: Provided is a polycrystalline diamond cutter with a substrate and a diamond body in which the diamond body includes bonded diamond particles and discernable diamondene fragments. The polycrystalline diamond cutter is manufactured by a high pressure high temperature method that includes sintering a diamond feed layer in which the diamond feed layer includes diamond particles and diamondene fragments.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: October 10, 2023
    Assignee: DIAMOND INNOVATIONS, INC.
    Inventor: Gary Flood
  • Patent number: 11773027
    Abstract: A preparation method and a product of a metal-matrix composite reinforced by nanoscale carbon materials are provided, including: plating metal layers on surfaces of the nanoscale carbon materials, and then adding mental particles to perform ball milling for dispersion and sintering. Volumes of the nanoscale carbon materials account for 0.01% to 30% of the metal-matrix composite. Size requirements of the nanoscale carbon materials and the metal particles are that: K×a sum of maximum cross-sectional areas of the nanoscale carbon materials in a unit volume?a sum of surface areas of the mental particles in the unit volume; and the K represent a space compensation coefficient. The method is practical and effective, and the nanoscale carbon materials are efficiently and uniformly dispersed in metallic matrix. The obtained composite further has excellent mechanical, electrical and thermal properties, and is applied in metal-matrix composites, nano-electronic components, and biosensors.
    Type: Grant
    Filed: March 14, 2023
    Date of Patent: October 3, 2023
    Assignee: ZHENGZHOU UNIVERSITY OF AERONAUTICS
    Inventors: Yunpeng Ding, Zhiyuan Li, Yizhuang Zhang, Haoju Jiang, Wei Zhai
  • Patent number: 11772236
    Abstract: Embodiments relate to a porous polishing pad for use in a chemical mechanical planarization (CMP) process of semiconductors and a process for preparing the same. According to the embodiments, the size and distribution of the plurality of pores contained in the porous polishing pad can be adjusted in light of the volume thereof. Thus, the plurality of pores have an apparent volume-weighted average pore diameter in a specific range, thereby providing a porous polishing pad that is excellent in such physical properties as polishing rate and the like.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: October 3, 2023
    Assignee: SK enpulse Co., Ltd.
    Inventors: Hye Young Heo, Jang Won Seo, Jong Wook Yun, Sunghoon Yun, Jaein Ahn
  • Patent number: 11773654
    Abstract: Embodiments of the invention relate to polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table that bonded to a cobalt-nickel alloy cemented carbide substrate. The cobalt-nickel alloy cemented carbide substrate provides both erosion resistance and corrosion resistance to the cemented carbide substrate. In an embodiment, a PDC includes a cemented carbide substrate including cobalt-nickel alloy cementing constituent. The PDC further includes a PCD table bonded to the cemented carbide substrate.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: October 3, 2023
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Debkumar Mukhopadhyay, Kenneth E. Bertagnolli
  • Patent number: 11761062
    Abstract: Polycrystalline diamond constructions are formed from a mixture of diamond grains including a first volume of fine-sized diamond grains, and a second volume of coarse-sized diamond grains. The fine-sized diamond grains are partially graphitized, and the coarse-sized diamond grains are not graphitized. The mixture of diamond grains is subjected to high pressure/high temperature sintering process conditions in the presence of a sintering aid thereby forming polycrystalline diamond. Contact areas between coarse-sized diamond grains in the polycrystalline diamond construction are substantially free of graphite.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: September 19, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Georgiy Voronin
  • Patent number: 11752559
    Abstract: The cubic boron nitride sintered material is a cubic boron nitride sintered material comprising: cubic boron nitride particles in an amount of 70 vol % or more and less than 100 vol %, and a bonding material, wherein the bonding material includes an aluminum compound, and includes cobalt as a constituent element; the cubic boron nitride sintered material has a first region in which a space between adjacent cubic boron nitride particles is 0.1 nm or more and 10 nm or less; and when the first region is analyzed by using an energy dispersive X-ray analyzer equipped with a transmission electron microscope, the atom % of aluminum in the first region is 0.1 or more.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: September 12, 2023
    Assignees: Sumitomo Electric Industries, Ltd., SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Yuichiro Watanabe, Katsumi Okamura, Akito Ishii, Yoshiki Asakawa, Akihiko Ueda, Satoru Kukino, Hisaya Hama
  • Patent number: 11753548
    Abstract: The present invention relates to a method for the treatment of a surface-reacted calcium carbonate, wherein the treatment agent is selected from the group consisting of ascorbic acid and/or salts thereof, gallic acid and/or salts thereof, unsaturated fatty acids and/or salts thereof, elemental iron, iron (II)-salts, iron (II)-comprising oxides, iron (II, III)-comprising oxides and mixtures thereof, a treated surface-reacted calcium carbonate as well as a use of the treated surface-reacted calcium carbonate as oxygen scavenger.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: September 12, 2023
    Assignee: Omya International AG
    Inventors: Samuel Rentsch, Matthias Welker, Patrick A. C. Gane
  • Patent number: 11745311
    Abstract: A buffing and polishing member has an uncompressed monolithic body of foam material having slits from an outside surface toward and less than a distance to a rotational axis of the body. The slits, on circumferential spaced planes, extend generally radially from the outside surface toward and less than a distance to the rotational axis to define a plurality of foam fingers and an unslit center portion. A fastening mechanism holds the center portion of the slit foam body in a compressed state along the rotational axis such that the uncompressed outer ends of the foam finger define a spherocylinder.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 5, 2023
    Assignee: Lake Country Manufacturing, Inc.
    Inventor: Scott S. McLain