Patents Examined by Pete Vrettakos
  • Patent number: 7326204
    Abstract: A brush electrode and a method for using the brush electrode for tissue ablation are disclosed. The brush electrode comprises a plurality of flexible filaments or bristles for applying ablative energy (e.g., RF energy) to target tissue during the formation of spot or continuous linear lesions. Interstitial spaces are defined among the filaments of the brush electrode, and the interstitial spaces are adapted to direct conductive or nonconductive fluid, when present, toward the distal ends of the brush filaments. The brush electrode facilitates electrode-tissue contact in target tissue having flat or contoured surfaces. The flexible filaments may be selectively trimmed to give a desired tip configuration or a desired standoff distance between the tissue and the conductive filaments in the brush electrode. Also, the filaments may be grouped into clusters. A shielded-tip brush electrode, including a flexible boot, is also disclosed.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: February 5, 2008
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Saurav Paul, Kedar Ravindra Belhe, Hong Cao, Chou Thao
  • Patent number: 7322974
    Abstract: Methods and apparatus for ablating a target tissue are discussed. Such methods and apparatus include those that simplify tissue ablation. For example, a tissue ablation device having an actuator, such as a trigger mechanism, coupled to a power source and an electrode is discussed. A single step of engaging the actuator causes the electrode to be introduced into the target tissue and causes energy to be delivered from the power supply to the tissue via the electrode. By way of additional example, a tissue ablation device having an actuator coupled to a fluid source and an electrode is discussed. A single step of engaging the actuator causes conductive fluid to flow from the fluid source to the target tissue location and causes the electrode to be introduced to the target tissue location. The fluid source may be a conductive fluid, such as saline, which may increase the efficiency of ablation. Various other configurations and methods that simplify tissue ablation are also discussed.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: January 29, 2008
    Assignee: Medtronic, Inc.
    Inventors: John M. Swoyer, Yelena G. Tropsha, Julie M. Woessner, Mark A. Christopherson
  • Patent number: 7318824
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: January 15, 2008
    Assignee: Vivant Medical, Inc.
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Patent number: 7316683
    Abstract: According to one aspect of the present invention, there is provided a treatment device for cutting a living tissue, comprising a main unit which is to be inserted into a body, a tip-end treatment portion which is disposed at a tip end of the main unit to cut the living tissue, a notch groove which is disposed at the tip-end treatment portion and which compresses the living tissue guided into the notch groove, and an electrode which is positioned in a part of the notch groove and which electrically cuts the living tissue compressed by the notch groove.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: January 8, 2008
    Assignee: Olympus Corporation
    Inventors: Hideyuki Kasahara, Takahiro Kogasaka
  • Patent number: 7311703
    Abstract: Devices and methods for cooling microwave antennas are disclosed herein. The cooling systems can be used with various types of microwave antennas. One variation generally comprises a handle portion with an elongate outer jacket extending from the handle portion. A microwave antenna is positioned within the handle and outer jacket such that cooling fluid pumped into the handle comes into contact directly along a portion of the length, or a majority of the length, or the entire length of the antenna to allow for direct convective cooling. Other variations include cooling sheaths which form defined cooling channels around a portion of the antenna. Yet another variation includes passively-cooled systems which utilize expandable balloons to urge tissue away from the surface of the microwave antenna as well as cooling sheaths which are cooled through endothermic chemical reactions. Furthermore, the microwave antennas themselves can have cooling lumens integrated directly therethrough.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: December 25, 2007
    Assignee: Vivant Medical, Inc.
    Inventors: Roman Turovskiy, Steven Kim, Mani Prakash, Francesca Rossetto
  • Patent number: 7306597
    Abstract: The present invention provides robotic surgical instruments and systems that include electrosurgical cutting/shearing tools and methods of performing a robotic surgical procedure. The surgical instruments can advantageously be used in robotically controlled minimally invasive surgical operations. A surgical instrument generally comprises an elongate shaft having a proximal end and a distal end. An end effector, for performing a surgical operation such as cutting, shearing, grasping, engaging, or contacting tissue adjacent a surgical site, is coupleable to a distal end of the shaft. Preferably, the end effector comprises a pair of scissor-like blades for cooperatively shearing the tissue. A conductor electrically communicating with at least one blade delivers electrical energy to tissue engaged by the blades. An interface coupled to the proximal end of the shaft and removably connectable to the robotic surgical system is also included.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: December 11, 2007
    Assignee: Intuitive Surgical,Inc
    Inventor: Scott Manzo
  • Patent number: 7306591
    Abstract: Apparatus and methods are provided for treating female urinary incontinence by applying a form of energy to tissue in the vicinity of the urethra and/or bladder outlet to change tissue compliance without substantially narrowing the urethral and/or bladder outlet lumen. The apparatus comprises an elongated shaft having a means for treating urethral tissue and an expandable member deployable distal of the means for treating. The expandable member is configured to be anchored against the bladder outlet to dispose the means for treating at a desired treatment site in the urethra using only tactile feedback. The means for treating may include a needleless RF electrode, an ultrasound transducer, or a cryogenic probe configured to be advanced through a hollow needle, each of which are designed to reduce or eliminate symptoms associated with urinary incontinence.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: December 11, 2007
    Assignee: Novasys Medical, Inc.
    Inventors: Simon W. H. Thomas, Peter S. Edelstein, John T. To, Benjamin T. Nordell
  • Patent number: 7303558
    Abstract: Surgical methods and apparatus for positioning diagnostic an therapeutic elements on the epicardium or other organ surface. The apparatus includes a tissue cooling apparatus.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: December 4, 2007
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: David K. Swanson
  • Patent number: 7300433
    Abstract: An elongated catheter device with a distal balloon assembly is adapted for endovascular insertion. Coolant injected through the device may, in different embodiments, directly cool tissue contacting the balloon, or may cool a separate internal chamber. In the first case, the coolant also inflates the balloon, and spent coolant is returned to the handle via a return passage extending through the body of the catheter. Plural balloons may be provided, wherein a secondary outer balloon surrounds a primary inner balloon, the primary balloon being filled with coolant and acting as the cooling chamber, the secondary balloon being coupled to a vacuum return lumen to serve as a robust leak containment device and thermal insulator around the cooling chamber. Various configurations, such as surface modification of the balloon interface, or placement of particles, coatings, or expandable meshes or coils in the balloon interface, may be employed to achieve this function.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: November 27, 2007
    Assignee: Cryocath Technologies Inc.
    Inventors: Miriam Lane, Leonilda Capuano, David Holtan, Jean-Pierre Lalonde, Claudia Lückge, Jean-Luc Pageard, Marwan Abboud, Johnny Al Asmar, Abderrahim Benrabah, Ken Chen, John W. Lehmann, Philippe Marchand, Robert Martin, Fredric L. Milder, Daniel Nahon
  • Patent number: 7300432
    Abstract: A self-centering coupling device is provided for coupling a sensor array to a surgical instrument for use in computer guided surgery. The self-centering coupling device includes a sensor support having a stem and sensor support arms coupled to the stem to support the sensors of the sensor array. The self-centering coupling device is received within a recess formed in the surgical instrument.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: November 27, 2007
    Assignee: DePuy Products, Inc.
    Inventors: Gabriel Surma, Troy David Martin, James Edward Clark, Jack Theodore Bryant
  • Patent number: 7276060
    Abstract: A surgical handpiece having a tip with at least two coaxially spaced electrically conductive tubes. The tubes are separated by an electrical insulator. The interior of the inner tube is used for aspiration of liquefied tissue. The outer tube is surrounded by a soft irrigation sleeve that forms an irrigation fluid path. The distal portion of the interior tube terminates inside of the outer tube so as to form a boiling region. Surgical fluid from the irrigation fluid path can enter the boiling region through a hole or port in the outer tube. Electrical current is passed between the inner and outer tube to rapidly boil any surgical fluid in the boiling region. The boiling fluid rapidly expands out of the ring between the tube ends and forces hot fluid to contact the targeted tissue, thereby liquefying the tissue and allowing the tissue to be aspirated. Such a construction allows the boiling chamber to be self-priming and operate even if the outer tube is occluded with material.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: October 2, 2007
    Assignee: Alcon, Inc.
    Inventor: Sean C. Madden
  • Patent number: 7273479
    Abstract: Methods and systems are provided for cooling an object with a cryogen having a critical point defined by a critical-point pressure and a critical-point temperature. A pressure of the cryogen is raised above a pressure value determined to provide the cryogen at a reduced molar volume that prevents vapor lock. Thereafter, the cryogen is placed in thermal communication with the object to increase a temperature of the cryogen along a thermodynamic path that maintains the pressure greater than the critical-point pressure for a duration that the cryogen and object are in thermal communication.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: September 25, 2007
    Assignee: Cryodynamics, LLC
    Inventors: Peter J. Littrup, Alexei V. Babkin, Robert Duncan, Sergey Boldarev
  • Patent number: 7270662
    Abstract: A device with a functional tip containing at least one active electrode capable of creating a controlled perforation in body tissue through the application of energy (e.g. Radio Frequency (RF)) is described. The position of the tip of the device can be determined in response to ECG measured at the tip and determined by a monitor coupled to the device. The device is useful to remove or perforate unwanted tissue in a controlled manner in any location in the body, particularly in the atrial septum for controlled transseptal puncture. In this application, the device is introduced into the right atrium, and the functional tip is then positioned against the atrial septum. ECG is used to locate the region of the fossa ovalis on the atrial septum. Energy is applied to create the perforation and ECG is monitored to determine if the perforation was created in a desired location.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: September 18, 2007
    Inventors: Naheed Visram, Krishan Shah
  • Patent number: 7258689
    Abstract: Alloys for medical, surgical and microsurgical instruments are proposed which comprise 0.01% to 20% by weight of germanium, from 0-25% of shallow hydrogenic and/or non-hydrogenic acceptor dopants in terms of weight ratio in relation to germanium, from 0% up to 20% by weight of one or more of the following compounds such as platinum, gold, palladium, iridium, ruthenium, osmium, rhodium, niobium, tantalum, tungsten, aluminium, silicon, hafnium, yttrium, lanthanum, zirconium with the remainder, up to 100% by weight, constituted by silver and inevitable impurities, wherein instruments from these alloys possess properties such as no capacitive impedance in relation to the electrode-tissue interface; a Far Infrared Radiation (FIR) emitting capacity when energized by any form of energy; sulfurization, corrosion and oxidation resistant and have suitable hardness for their intended use; emit anions and may possess fractal surfaces.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: August 21, 2007
    Assignee: Matteo Tutino
    Inventor: Francesco Di Salvo
  • Patent number: 7252667
    Abstract: An open electrosurgical forceps for sealing tissue includes a pair of first and second shaft members each having a jaw member disposed at a distal end thereof. The jaw members are movable from a first position in spaced relation relative to one another to a subsequent position wherein the jaw members cooperate to grasp tissue therebetween. Each of the jaw members includes an electrically conductive sealing plate for communicating electrosurgical energy through tissue held therebetween. At least one of the jaw members includes a knife channel defined along a length thereof which is dimensioned to reciprocate a cutting mechanism therealong for cutting tissue disposed between jaw members. An actuator having a rack and pinion system advances the cutting mechanism from a first position wherein the cutting mechanism is disposed proximal to tissue held between the jaw members to at least one subsequent position wherein the cutting mechanism is disposed distal to tissue held between the jaw members.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: August 7, 2007
    Assignee: Sherwood Services AG
    Inventors: Michael C. Moses, Paul R. Romero, Kristin D. Johnson, Duane E. Kerr, Sean T. Dycus
  • Patent number: 7252660
    Abstract: A multifunctional instrument for use in microinvasive surgery includes an operator hand grip, a multi-lumen tube fastened on the operator hand grip, at least two guide channels coaxially configured inside the tube, and surgical instruments that are displaceably and rotationally disposed in the guide channels. The instrument also includes a shaft at whose distal end one surgical working element each is disposed. The instruments can be displaced between a rest position, in which the respective working element is retracted into the tube, and a working position, in which the respective working element projects from the distal end of the tube. The instruments can be displaced into and out of the working position by means of a motor and at least one of the instruments can be rotated in its working position by means of a motor.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: August 7, 2007
    Inventor: Reiner Kunz
  • Patent number: 7250050
    Abstract: A tubal sterilization device having sesquipolar electrodes includes a hollow catheter defining an interior passageway, the catheter including a first end for insertion transcervically into a patient, and a second end opposite the first end for grasping and manipulation by a physician. The device further includes an electrode tip situated at the first end of the catheter. The electrode tip includes a first portion having a first electrode, the first portion being preferably formed generally conically in shape so that it may be snugly fit into the tubal osteum of the fallopian tube. The electrode tip further includes a second portion having a second electrode which is a coil formed from a wire which is helically wrapped about an insulating spacer or support.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: July 31, 2007
    Assignee: Ethicon, Inc.
    Inventor: Thomas P. Ryan
  • Patent number: 7238185
    Abstract: An apparatus and method for cutting a material including conducting and non-conducting materials such as biological tissue, cellulose or plastic while the material is submerged in a conductive liquid medium. The apparatus has a cutting electrode with an elongate cutting portion having an aspect ratio (length to width) of 1 or more and a return electrode. The two electrodes are immersed in the conductive medium and a voltage is applied between them to heat the medium, thus producing a vapor cavity around the elongate cutting portion and ionizing a gas inside the vapor cavity to produce a plasma. The voltage applied between the electrodes is modulated in pulses having a modulation format selected to minimize the size of the vapor cavity, its rate of formation and heat diffusion into the material while the latter is cut with an edge of the elongate cutting portion. The modulation format includes pulses ranging in duration from 10 ?s to 10 ms, as well as minipulses and micropulses, as necessary.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: July 3, 2007
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniel V. Palanker, Alexander B. Vankov
  • Patent number: 7226447
    Abstract: A method includes recognizing an electrosurgical probe coupled to an electrosurgical generator, selecting a mode of the electrosurgical generator based upon the recognized probe, setting a therapy profile based upon the selected mode, and displaying the therapy profile. The generator can include user inputs for modifying the therapy profile. A computer implemented method for achieving a target temperature includes: a) receiving the target temperature; b) calculating a first set temperature; c) commanding a first output power level until a measured temperature is equal to or greater than the first set temperature; d) calculating an updated set temperature based upon the target temperature; e) commanding a second output power level until the measured temperature is equal to or greater than the updated set temperature; and repeating d and e until the updated set temperature is equal to the target temperature.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: June 5, 2007
    Assignee: Smith & Nephew, Inc.
    Inventors: Andy H. Uchida, Duane W. Marion, Ken Woodland, Katherine A. Knudsen
  • Patent number: 7223266
    Abstract: A method for producing hemostasis of an artery of a patient having a puncture following arterial catheterization including introducing a hemostasis device including at least one electrode into the vicinity of the puncture, supplying an electric current to the at least one electrode, thereby heating blood in the vicinity of the puncture and causing coagulation of the blood and subsequently removing the hemostasis device from the patient.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: May 29, 2007
    Assignee: Cardiodex Ltd.
    Inventors: Hayim Lindenbaum, Shimon Eckhouse