Patents Examined by Peter M Novak
  • Patent number: 10666139
    Abstract: During a load transient or load current step, an error amplifier of a regulator circuit can be temporarily pushed to saturation and a compensation capacitor can be discharged. The present inventor has recognized, among other things, that the transient response performance in such a case can suffer due to the slow rising rate of the error amplifier caused by the slow charging of the compensation capacitor. Using various techniques, a switching regulator circuit can include a proportional-integral (PI) compensation network clamp circuit that can provide a fast system transient response and a low quiescent current, which can reduce power consumption.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: May 26, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventor: Bin Zhang
  • Patent number: 10658935
    Abstract: A method of controlling an on-board charger (OBC) and an OBC system are capable of improving efficiency of the OBC by controlling a DC link voltage such that a DC-DC LLC converter of an ecofriendly vehicle always operates at a resonance frequency. The method includes: detecting a switching turn-on time of a switching unit and a conduction time of a diode, comparing the switching turn-on time with the conduction time, comparing a point of time when the switching unit is turned on with a point of time when the diode becomes conductive, determining an operating frequency region of the switching unit, and controlling a voltage of an input terminal of the LLC converter such that a switching frequency of the switching unit is in a resonance frequency region of the LLC converter according to the determined operating frequency region.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: May 19, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Gi Bong Son, Hui Sung Jang, Hyun Wook Seong
  • Patent number: 10651746
    Abstract: A converter includes a transformer, a main switch, an active clamping circuit, a synchronous rectifying switch and a processing circuit. The transformer includes a primary winding and a secondary winding. The main switch is coupled to the primary winding. The active clamping circuit clamps the voltage across the main switch when it is OFF. The active clamping circuit includes an auxiliary switch. The synchronous rectifying switch is coupled to the secondary winding. The processing circuit determines whether the rectifying switch is in a main conducting period or a sub conducting period according to a first voltage signal across the rectifying switch and at least one detecting signal from the converter, and generates a driving signal to control the synchronous rectifying switch accordingly.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: May 12, 2020
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Hai-Bin Song, Dao-Fei Xu, Jian Zhou, Le-Yang Yang, Qi Fu, Jin-Fa Zhang
  • Patent number: 10651749
    Abstract: A converter includes a transformer, a main switch, an active clamping circuit, a synchronous rectifying switch and a processing circuit. The transformer includes a primary winding and a secondary winding. The main switch is coupled to the primary winding. The active clamping circuit clamps the voltage across the main switch when it is OFF. The active clamping circuit includes an auxiliary switch. The synchronous rectifying switch is coupled to the secondary winding. The processing circuit determines whether the rectifying switch is in a main conducting period or a sub conducting period according to a first voltage signal across the rectifying switch and at least one detecting signal from the converter, and generates a driving signal to control the synchronous rectifying switch accordingly.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: May 12, 2020
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Hai-Bin Song, Dao-Fei Xu, Jian Zhou, Le-Yang Yang, Qi Fu, Jin-Fa Zhang
  • Patent number: 10637371
    Abstract: An interface arrangement is configured to couple an alternating current, AC, power system with a direct current, DC, power system, or vice versa. The interface arrangement includes a plurality of series-connected converter modules. Each converter module includes at least one multi-level converter cell configured to provide a voltage contribution to at least a portion of an AC waveform for example based on voltage of the DC power system. Each converter module includes at least one converter valve, electrically connected to the multi-level converter cells and including at least two anti-parallel thyristors. The converter valves are switchable between conducting states with a selected current conduction direction and a non-conducting state so as to selectively control polarity of any voltage contribution provided by the at least one multi-level converter cell. The converter valves can also serve as fault protection, e.g. to divert overcurrents.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: April 28, 2020
    Assignee: ABB SCHWEIZ AG
    Inventor: Sasitharan Subramanian
  • Patent number: 10635124
    Abstract: Some embodiments include apparatuses and methods of using such apparatuses. One of the apparatuses includes a control circuitry to generate error information based on a value of the feedback voltage generated from an output voltage, generate output information to control a power switching unit based on the error information provided to a forward path in the control circuitry, and adjust a gain of the forward path based on a gain factor computed based at least in part on a first value of the output information in order to cause the output information to have a second value. The control circuitry also computes a value of correction information when the output voltage is within a target value range, and adjusts the control information, based on the correction information, when the output voltage is outside the target value range.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: April 28, 2020
    Assignee: Intel Corporation
    Inventors: Tarun Mahajan, Ramnarayanan Muthukaruppan, Rajesh Sidana, Srinath B. Pai
  • Patent number: 10622933
    Abstract: An inverter device that includes an inverter circuit that converts power between DC power and multi-phase AC power; a drive circuit that transfers a drive signal to each of a plurality of switching elements that form the inverter circuit to cause a switching element of the plurality of switching elements to perform turn-on, in which the switching element is caused to transition from an off state to an on state, and turn-off, in which the switching element is caused to transition from the on state to the off state; and a current detection circuit that detects a current that flows through each of the plurality of switching elements.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: April 14, 2020
    Assignee: AISIN AW CO., LTD.
    Inventors: Shinsuke Tsubamoto, Isamu Kato
  • Patent number: 10622887
    Abstract: A zero current detector control circuit controls a voltage applied to a zero current detector (ZCD) input of a power factor corrector integrated circuit (PFC IC) that produces a driver output having an on time and an off time. The zero current detector control circuit includes a voltage detection input circuit coupled to a rectified AC input voltage. The detector control circuit generates a control voltage applied to a control terminal of an electronic switch. When the rectified AC input voltage has a phase angle in a first portion or in a last portion of a half-cycle, the electronic switch conducts to connect a capacitor to the ZCD input of the PFC IC. The capacitor causes the fall time of the trailing edge of a pulse applied to the ZCD input to increase, which causes the off time of the driver output of the PFC IC to increase.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: April 14, 2020
    Assignee: Universal Lighting Technologies, Inc.
    Inventors: Wei Xiong, Dane Sutherland
  • Patent number: 10615702
    Abstract: A control method of a power converter including a first stage converter and a second stage converter is provided. The first stage converter converts an input voltage into an intermediate voltage. The second stage converter converts the intermediate voltage into an output voltage to power a load. If a loading amount of the load is larger than a first threshold value, the intermediate voltage is adjusted to increase a voltage difference between the intermediate voltage and the output voltage, so that a change of the intermediate voltage is in a negative correlation with a change of the loading amount. If the loading amount is smaller than a second threshold value, the intermediate voltage remains be unchanged or the intermediate voltage is adjusted, so that the change of the intermediate voltage is in positive correlation with the change of the loading amount.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: April 7, 2020
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Yu Zhang, Haoyi Ye, Jianhong Zeng
  • Patent number: 10615701
    Abstract: A hybid resonant DC to DC converter uses an LLC or other resonant structure on the primary side, applying a two state waveform to one end of the resonant structure and a multi-state waveform to the other end of the resonant structure. The waveforms are at or near the resonant resonant frequency and the output voltage level is regulated by varying the shape of the multi-state waveform by varying the duty cycle of the switches used to generate it. The allows the converter to operate near or at its optimal resonant point, resulting in higher efficiency, over a wide range of regulated output voltage levels.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 7, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Dianbo Fu, Heping Dai
  • Patent number: 10615788
    Abstract: A protective circuit includes a first capacitance element and a second capacitance element. A first capacitance value of the first capacitance element increases with an increase in a voltage applied to a first terminal of a circuit element. The second capacitance element is connected in series with the first capacitance element between the first terminal and a second terminal which is a reference potential terminal. The second capacitance element has a second fixed capacitance value which is larger than the first capacitance value until the voltage reaches a first value. The second capacitance element has a breakdown voltage characteristic higher than a breakdown voltage characteristic of the circuit element.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 7, 2020
    Assignee: FUJITSU LIMITED
    Inventor: Tatsuya Hirose
  • Patent number: 10613563
    Abstract: A regulator circuit supplies an output voltage VOUT to a load. A second transistor is arranged in parallel with a first transistor, and has a relatively small size. A feedback circuit generates a first feedback signal and a second feedback signal according to the output voltage VOUT. A first error amplifier controls the first transistor such that the first feedback signal approaches a first reference value. A second error amplifier controls the second transistor such that the second feedback signal approaches a second reference value. In a light-load state, the operation of the first error amplifier is maintained.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: April 7, 2020
    Assignee: ROHM CO., LTD.
    Inventors: Makoto Yasusaka, Hiroki Inoue
  • Patent number: 10599172
    Abstract: There is to provide a power circuit capable of stabilizing an internal power source voltage and assuring a normal operation of a load circuit. According to one embodiment, the power circuit includes a regulator which generates an output voltage using an entered input voltage, a voltage detecting circuit which detects the output voltage, and a clamp circuit which outputs an internal power source voltage based on the output voltage and in a first failure that the output voltage is larger than a predetermined first voltage, outputs the internal power source voltage suppressed to the first voltage and less, in which the clamp circuit outputs the internal power source voltage to the logic circuit which operates with the internal power source voltage of the first voltage and less and the voltage detecting circuit outputs the first failure to the logic circuit when detecting the first failure.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: March 24, 2020
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kentaro Hayashi, Yutaka Hayashi
  • Patent number: 10594313
    Abstract: Systems and methods for adaptive modulation of MOSFET driver key parameters for improved voltage regulator efficiency and reliability in a voltage regulator may include a power stage. The power stage may include a high side switch including a high side gate, a peak voltage detection circuit, and a high side driver strength modulator circuit. The high side driver strength modulator circuit may determine a high side driver strength level. The high side driver strength modulator circuit may also connect a subset of the set of high side gate drivers to the high side gate based on the high side driver strength level. The high side driver strength modulator circuit may also disconnect a remaining subset of the set of high side gate drivers from the high side gate.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: March 17, 2020
    Assignee: Dell Products L.P.
    Inventors: Kejiu Zhang, Shiguo Luo, Ralph H. Johnson
  • Patent number: 10587181
    Abstract: Each of a plurality of semiconductor elements is provided with a first control terminal and a second control terminal. A built-in gate resistor is connected between the semiconductor element and the first control terminal. Individual voltage pulse signals are input to the second control terminals when the plurality of semiconductor elements are individually turned on and off. A common voltage pulse signal is input to some of the first control terminals when a first group of semiconductor elements is turned on and off in common. A common voltage pulse signal is input to others of the first control terminals when a second group of semiconductor elements is turned on and off in common.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: March 10, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazufumi Ishii
  • Patent number: 10574143
    Abstract: A power supply device includes: a power supply; a conversion module including a plurality of conversion units configured to perform voltage conversion of power supplied by the power supply; a change unit that an operation number, which is the number of the conversion units performing the voltage conversion; and a control unit that supplies a control signal having a predetermined duty ratio to the conversion unit and controls the conversion module. When the change unit changes the operation number, the control unit gradually increases a first duty ratio, which is a duty ratio of the control signal supplied to a conversion unit for starting or stopping the voltage conversion to a second duty ratio, which is a duty ratio of the control signal supplied to a conversion unit for continuously performing the voltage conversion, at a predetermined change rate, or gradually decreases the first duty ratio to zero.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: February 25, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Ryota Kitamoto
  • Patent number: 10560035
    Abstract: [Object] [Solving Means] A discharge device includes a discharge unit and a cut-off detection unit. The discharge unit is configured to discharge a capacitor at a variable discharge current value on the basis of a voltage of a rectified signal obtained by full-wave rectifying an AC voltage input via an input filter including the capacitor. The cut-off detection unit is configured to monitor the voltage of the rectified signal and to detect whether or not a power supply is cut off on the basis of a change of the voltage when the capacitor is discharged by the discharge unit at a specific discharge current value.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: February 11, 2020
    Assignee: Sony Corporation
    Inventor: Hiroyuki Watanabe
  • Patent number: 10547237
    Abstract: A power conversion system includes a feedback controller circuit connected between the output of a boost converter and a duty cycle control input of the boost converter. The feedback controller circuit comprises: a first summing node which generates an error signal indicative of a difference between a voltage of the output of the boost converter and a reference voltage, a compensator circuit receiving the error signal and applying a gain to the error signal to generate an amplified error signal, and a scaling circuit for scaling the amplified error signal to generate a scaled signal, which is applied to a duty cycle control input of the boost converter to alter the duty cycle and/or pulse frequency of the boost converter. The feedback controller circuit provides a frequency-dependent impedance transformation looking into the boost converter from the source such that instability due to line impedance is reduced.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: January 28, 2020
    Assignee: MKS Instruments, Inc.
    Inventor: Pericles N. Bakalos
  • Patent number: 10541623
    Abstract: A circuit topology and switching scheme for a circuit that includes an input voltage divider configured to provide a divided voltage that may be approximately half of a supply voltage. The circuit also includes a switching circuit with a first half-bridge that includes a first switching node and a second half-bridge that includes a second switching node. One or more switches are configured to connect the divided voltage to the first switching node and the second switching node.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: January 21, 2020
    Assignee: Infineon Technologies AG
    Inventor: Vratislav Michal
  • Patent number: 10523125
    Abstract: A power supply device includes: a power supply; a conversion module including a plurality of conversion units configured to perform voltage conversion of power supplied by the power supply; a change unit that an operation number, which is the number of the conversion units performing the voltage conversion; and a control unit that supplies a control signal having a predetermined duty ratio to the conversion unit and controls the conversion module. When the change unit changes the operation number, the control unit gradually increases a first duty ratio, which is a duty ratio of the control signal supplied to a conversion unit for starting or stopping the voltage conversion to a second duty ratio, which is a duty ratio of the control signal supplied to a conversion unit for continuously performing the voltage conversion, at a predetermined change rate, or gradually decreases the first duty ratio to zero.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: December 31, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Ryota Kitamoto