Patents Examined by Philip C Edwards
  • Patent number: 11406444
    Abstract: Embodiments of medical treatment including skin treatment using electrical energy, especially with the primary purpose for skin treatment for aesthetics are described generally herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: August 9, 2022
    Inventor: Jongju Na
  • Patent number: 11389103
    Abstract: Devices and methods are disclosed that treat a medical condition, such as migraine headache, by electrically stimulating a nerve noninvasively, which may be a vagus nerve situated within a patient's neck. Preferred embodiments allow a patient to self-treat his or her condition. Disclosed methods assure that the device is being positioned correctly on the neck and that the amplitude and other parameters of the stimulation actually stimulate the vagus nerve with a therapeutic waveform. Those methods comprise measuring properties of the patient's larynx, pupil diameters, blood flow within an eye, electrodermal activity and/or heart rate variability.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: July 19, 2022
    Assignee: ELECTROCORE, INC
    Inventors: Bruce J. Simon, Joseph P. Errico
  • Patent number: 11376182
    Abstract: An apparatus, system, and method for analysing and/or treating symptoms of IBS. A system for treating IBS may include a processor configured to receive a first set of data from biosensors configured to measure contractions in the bowel, receive a second set of data from a galvanic skin response sensor configured to measure electrical conductance of the skin, and analyze patterns between the first and second sets of data. An apparatus may include a base material comprising a material that fits to the body of a user, an elastic portion capable of applying compression across the abdomen of a user, and a tension adjusting mechanism for adjusting the compression applied to the abdomen in order to treat the symptoms of IBS.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: July 5, 2022
    Assignee: ColoWrap, LLC.
    Inventor: James Hathorn
  • Patent number: 11357979
    Abstract: A system for stimulating body tissue may include a stimulation lead, sensors, and a control unit. The stimulation lead may include one or more energy sources. The control unit may include a processor and non-transitory computer readable medium, and an interface (e.g., touch screen interface) for receiving user inputs and communicating information to the user. The sensors may be configured to provide impedance measurements to the control unit. The control unit may calculate lung gas distributions and/or generate an image modeling lung gas distributions. Stimulation delivered by the stimulation may be adjusted based on the impedance measurements.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: June 14, 2022
    Assignee: Lungpacer Medical Inc.
    Inventors: Douglas G. Evans, Viral S. Thakkar
  • Patent number: 11350880
    Abstract: A monitor comprises circuitry to receive a signal and process the signal to monitor at least one characteristic of a subject, and a flexible polymer casing forming a waterproof enclosure for the circuitry. The flexible polymer casing is infused with a conductive material at location to form infused electrode that extends from an exterior of the flexible polymer casing to an interior of the flexible polymer casing, and the infused electrode is coupled to the circuitry so as to allow the signal to pass from outside the flexible polymer casing to the circuitry. A polymer in a portion of the flexible polymer casing that is infused with the conductive material at the location is cross-linked with a polymer in a portion of the flexible polymer casing that is not infused with the conductive material.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: June 7, 2022
    Assignee: LumiraDx UK Ltd.
    Inventors: Thomas J. Quinlan, Paul J. Gaudet, David Peabody Goodall, III, John Edgar MacLean
  • Patent number: 11351389
    Abstract: Presented herein are techniques for initiating a night-time mode of operation in an implantable hearing prosthesis in response to detection of night-time recharging operations. More specifically, an implantable hearing prosthesis comprises a rechargeable battery that is configured to be recharged via an external night-time charging device, such as a pillow charger. The implantable hearing prosthesis is configured to detect inductive charging of the rechargeable battery by the external night-time charging device. In response, the implantable hearing prosthesis is switched to a night-time mode of operation.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: June 7, 2022
    Assignee: Cochlear Limited
    Inventors: Jan Raymond Janssen, Koen Van den Heuvel, Richard Bruce Murphy
  • Patent number: 11338144
    Abstract: A multiple output current stimulator circuit with fast turn on time is described. At least one pair of input side and output side transistors is arranged in a current mirror connected to a supply transistor by cascode coupling. The output side transistor supplies stimulation current to an electrode in contact with tissue. An operational amplifier connected to a reference voltage and to the output side transistor drives the supply transistor to maintain the voltage at the output side transistor equal to the reference voltage. The at least one pair of transistors includes multiple pairs of transistors whose output side transistors drive respective electrodes with stimulation currents. The stimulator determines the initiation and duration of stimulation current pulses supplied to each electrode. At circuit activation, large currents are generated which discharge capacitances in the output side transistors causing rapid output side transistor turn on.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: May 24, 2022
    Assignee: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventor: Edward K. F. Lee
  • Patent number: 11324951
    Abstract: An electrical treatment device (200) includes a remaining power detection unit (302) that detects a remaining battery power of the electrical treatment device (200); a treatment content setting unit (306) that sets a treatment content; an impedance measurement unit (304) that measures a bioelectrical impedance of a site on a body of a user by using electrodes that come into contact with the site; a treatment execution unit (312) that performs treatment of the site by controlling a voltage waveform applied to the electrodes; and a determination unit (310) that determines whether treatment in accordance with the treatment content can be executed up until a treatment time elapses on the basis of a current remaining battery power and a power consumption calculated from the bioelectrical impedance and the voltage waveform.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: May 10, 2022
    Assignee: OMRON HEALTHCARE CO., LTD.
    Inventors: Mitsuru Samejima, Yui Watanabe
  • Patent number: 11324949
    Abstract: A system for electrically stimulating one or more muscle groups includes a processor-readable storage medium storing, in association with each of at least one muscle group, digital exertion data representative of one or more action potentials captured during an exertion regime from the muscle group of a respective subject; a signal generator for generating electrical stimulation signals; processing structure configured to automatically retrieve digital exertion data from the processor-readable storage medium and to automatically cause the signal generator to generate new electrical stimulation signals based on the digital exertion data; and a signal distributor for conveying the new electrical stimulation signals from the signal generator to one or more respective muscle groups of at least one different subject.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: May 10, 2022
    Assignee: Eleway Industries Inc.
    Inventors: Amir Jomehri, Jeffrey Burton, Chengkai Yao
  • Patent number: 11318319
    Abstract: An implantable stimulator is provided having a conformable foil-like substrate, having a longitudinal axis extending from a pulse generator to a distal end of the substrate. The substrate comprising one or more adjacent polymeric substrate layers and an electrode array. The electrode array having a first and second electrode where one or more electrical interconnections are comprised in the substrate. The conformable foil-like substrate has a maximum thickness of 0.5 millimeter or less, proximate the electrodes. By providing a more easily patternable multilayer substrate, more complicated electrode array configurations may be supported, allowing a higher degree of flexibility to address transverse and/or longitudinal misalignment. By providing a relatively thin implantable electrode array user comfort may be increased through application of energy to tissue by the implantable stimulator.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: May 3, 2022
    Assignee: Salvia BioElectronics B.V.
    Inventors: Daniel Willem Elisabeth Schobben, Hubert Cecile Francois Martens
  • Patent number: 11305110
    Abstract: A treatment for obstructive sleep apnea (“OSA”) of a user includes affixing a patch externally on a dermis of the user, the patch including a flexible substrate, an adhesive on a first side adapted to adhere to the dermis of the user, a processor directly coupled to the substrate, and electrodes directly coupled to the substrate. The treatment includes detecting an occurrence of OSA and activating the patch in response to the detecting, the activating including generating an electrical stimuli via the electrodes to activate the genioglossus muscle of the user.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: April 19, 2022
    Assignee: NEUROSTIM TECHNOLOGIES LLC
    Inventors: Hoo-min D. Toong, William C. Altmann
  • Patent number: 11291397
    Abstract: An ECG monitoring system for ambulatory patients includes a small multi-electrode patch that adhesively attaches to the chest of a patient. A reusable battery-powered ECG monitor clips onto the patch and receives patient electrical signals from the electrodes of the patch. A processor continuously processes received ECG signals and stores the signals in memory in the monitor. The processor also analyzes the received ECG signals for predefined arrhythmia. If an arrhythmia is detected, a wireless transceiver in the ECG monitor transmits the event information and an ECG strip to a cellphone handset. The cellphone handset automatically relays the event information and ECG strip to a monitoring center for further diagnosis and necessary intervention.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: April 5, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Solosko, Stacy Gehman, Earl Herleikson, Thomas Lyster, Shannon Fong, Kim Hansen, Jon Bishay, Chuni Kao, Brett Cross, Krishnakant Nammi, Corinne Mauser
  • Patent number: 11294171
    Abstract: A light sensing method, applied to a light sensing system comprising a light sensor and at least one light source. The light sensor comprises a plurality of light sensing units. The light sensing method comprises: controlling the light sensor to capture images according to the light source; generating an exposure condition according brightness that each of the light sensing units senses, to control all the light sensing units to generate a target brightness distribution according to the exposure condition; and controlling the light sensing units to sense light from the light source according to the exposure condition. The light sensing system can have a better SNR via adjusting the exposure condition for each one of the light sensing units. Such light sensing method can be applied to compute physiological parameters.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: April 5, 2022
    Assignee: PixArt Imaging Inc.
    Inventors: Ren-Hau Gu, Chih-Hsin Lin
  • Patent number: 11291842
    Abstract: A neuromodulation system is provided herein. The system can include a neuromodulation device, an electronics package, which can be part of the neuromodulation device; an external controller; a sensor; and a computing device. The neuromodulation device can include a neuromodulation lead having a lead body configured to be bent to a desired shape and to maintain that shape in order to position the electrodes relative to neural and/or muscular structures when fully deployed. The neuromodulation device can also include an antenna including an upper and a lower coil electrically connected to each other in parallel. The computing device can execute a closed-loop algorithm based on physiological sensed data relating to sleep.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: April 5, 2022
    Assignee: XII Medical, Inc.
    Inventors: Anthony V. Caparso, Josh Nickols
  • Patent number: 11266457
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: March 8, 2022
    Assignee: Medtronic CryoCath LP
    Inventors: Regina E. Groves, Jean-Pierre Lalonde, Timothy G. Laske, Claudia Lueckge, Dan Wittenberger, Ramin Sabbaghe-Kermani, Mahmoud Kabir-Seraj
  • Patent number: 11266836
    Abstract: Techniques to help improve efficiency or effectiveness of treating a disorder such as RLS or PLMD, such as by issuing neural electrostimulations to a particular patient, while varying one or more amplitude parameters (e.g., at least one of electrostimulation current amplitude, electrostimulation voltage amplitude, or electrostimulation pulsewidth duration). A corresponding patient-subjective or patient-objective response can be observed. A characteristic electrostimulation intensity relationship can be generated, for example, based on the determined respective at least one of RLS or PLMD response indication threshold amplitude parameters and the plurality of corresponding neural electrostimulation durations.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: March 8, 2022
    Assignee: NOCTRIX HEALTH, INC.
    Inventors: Jonathan David Charlesworth, Shriram Raghunathan
  • Patent number: 11260229
    Abstract: Disclosed are apparatuses and methods for reducing or limiting blood loss and reducing bleed time in a subject by combined vagus and trigeminal stimulation. The apparatuses and methods may activate (e.g., electrically) one or more branches of the trigeminal nerve and may concurrently (at overlapping or near-overlapping time) independently activate the vagus nerve. This activation may be invasive or non-invasive.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: March 1, 2022
    Assignee: The Feinstein Institutes for Medical Research
    Inventor: Kirk R. Manogue
  • Patent number: 11247050
    Abstract: A system for controlling urination in a patient includes an implantable controller and an external device. The implantable controller includes circuitry and electrodes for stimulating the pudenal nerves in order to control urination. In addition, the implantable controller includes sensors for determining information on bladder fullness and for transmitting such information to an external device which is used for controlling the implanted controller. The external device will display when bladder filling exceeds a safe threshold level, allowing the patient and a caregiver to take appropriate steps to allow the patient to urinate.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: February 15, 2022
    Assignee: InCube Labs, LLC
    Inventor: Mir Imran
  • Patent number: 11241578
    Abstract: The present invention provides a nocturnal enuresis treatment device 1 including a sensor 10 for detecting urination; one or more stimulation pads 20 constituted to impart a stimulus to a wearer; and a mechanical portion 30 including the following: (i) a stimulus generation unit 31 for generating a signal for causing the stimulation pads 20 to impart the stimulus to the wearer, and (ii) a control unit 32 for generating a signal for causing the stimulus generation unit 31 to generate the stimulus in response to urination detection by the sensor.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: February 8, 2022
    Assignee: KYOTO PREFECTURAL PUBLIC UNIVERSITY CORPORATION
    Inventor: Yasuyuki Naitoh
  • Patent number: 11229788
    Abstract: Nerve stimulation systems and methods are disclosed for providing improved compliance of a patient to a pelvic disorder treatment regimen. A patient interface module is connected to a control module for providing compliance information related to compliance criteria for a set of scheduled events. Patient compliance is assessed and notification or treatment events can be scheduled, rescheduled or otherwise adjusted based upon patient compliance or non-compliance according to compliance rules and parameters of a treatment compliance module. Both compliance and non-compliance may lead to adjustment of the treatment regimen, scheduled treatment events, and notifications to the patient or user operating the nerve stimulation system.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: January 25, 2022
    Assignee: EBT Medical, Inc.
    Inventors: Michael Sasha John, Paul B. Yoo