Patents Examined by Phillip Johnston
  • Patent number: 11239041
    Abstract: The present invention relates to a multi-stage vacuum equipment, preferably a two-stage equipment, whose normal operation requires different pressures to be set, wherein the pressure variation may be achieved by a Shape Memory Alloy (SMA) wire movement of a suitable element. The invention further discloses a method for operating said multi-stage vacuum equipment controlled by a SMA actuator.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: February 1, 2022
    Assignee: Saes Getters S.p.A.
    Inventor: Marco Urbano
  • Patent number: 11239053
    Abstract: Charged particle beam systems and methods, such as a multi beam charged particle beam system and related methods, can compensate sample charging.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: February 1, 2022
    Assignee: Carl Zeiss MultiSEM GmbH
    Inventor: Dirk Zeidler
  • Patent number: 11232928
    Abstract: A multi-beam inspection apparatus including an improved source conversion unit is disclosed. The improved source conversion unit may comprise a micro-structure deflector array including a plurality of multipole structures. The micro-deflector deflector array may comprise a first multipole structure having a first radial shift from a central axis of the array and a second multipole structure having a second radial shift from the central axis of the array. The first radial shift is larger than the second radial shift, and the first multipole structure comprises a greater number of pole electrodes than the second multipole structure to reduce deflection aberrations when the plurality of multipole structures deflects a plurality of charged particle beams.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: January 25, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Qian Zhang, Xuerang Hu, Xuedong Liu
  • Patent number: 11224675
    Abstract: Disclosed herein is a forced irradiated air shielding mechanism that is an effective protective measure against Covid-19. The UV-C irradiated forced air flow face shield described herein is compact enough to be camouflaged under a cap. In this work it is mathematically proven that the described UV-C irradiated forced air flow face shield by itself provides more effective protection against the Covid-19 or similar airborne pathogens. The shield can be enabled using a mercury discharge tube or light emitting diode (LED) irradiator. Computational fluid dynamics is presented to show that positive irradiated air pressure ensures that the only air breathed by the wearer is irradiated. Also presented is a face shield testing apparatus.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: January 18, 2022
    Assignee: Akcasu Airborne Virus Protection Systems, Inc.
    Inventor: Osman Ersed Akcasu
  • Patent number: 11227752
    Abstract: The present invention relates to a composition analysis technology of ultramicro-volume liquid by laser ablation plasma mass spectrometry. Using a pipette gun to extract the liquid to be detected in a low-temperature environment, dropping the liquid into a dropping pit in a dropping plate, the liquid level is slightly higher than an overflow table in the dropping plate; dropping different liquid samples into different dropping pits by the same method; gradually covering the dropping pit with an analysis film having an area 1.5 times larger than that of the dropping plate from one side of the dropping plate, tightly adhering the thin film onto the dropping plate by using a transparent adhesive tape, the thin film is in close contact with the liquid level; placing the dropping plate covered by the thin film in a LA-ICPMS universal solid sample chamber, and then setting parameters for ablation.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: January 18, 2022
    Inventors: Xing Ding, Congying Li, Chanchan Zhang, Zhuoyu Liu, Chen Chen, Junjie He, Weidong Sun
  • Patent number: 11229111
    Abstract: A method of operating a semiconductor apparatus includes generating, by a droplet generator, a target material droplet; receiving, by a catcher, the target material droplet, wherein the catcher has a first section and a second section, wherein the first section of the catcher is closer to the droplet generator than the second section of the catcher; and heating the second section of the catcher, wherein the first section of the catcher is longer than the second section of the catcher and is free of a heater, and heating the second section of the catcher is performed such that a temperature of the second section of the catcher is higher than a temperature of the first section of the catcher.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: January 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Ming Shih, Chi-Hung Liao
  • Patent number: 11211227
    Abstract: In one embodiment, a multi charged particle beam evaluation method includes writing a plurality of evaluation patterns on a substrate by using multi charged particle beams, with a design value of a line width changed by a predetermined change amount at a predetermined pitch, measuring the line widths of the plurality of evaluation patterns thus written, and extracting a variation in a specific period of a distribution of differences between results of a measurement value and the design value of each of the line widths of the plurality of evaluation patterns. The predetermined change amount is equal to or larger than data resolution and smaller than a size of each of pixels, each of which is a unit region to be irradiated with one of the multi charged particle beams.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: December 28, 2021
    Assignee: NuFlare Technology, Inc.
    Inventor: Rieko Nishimura
  • Patent number: 11211222
    Abstract: Automatic alignment of the zone axis of a sample and a charged particle beam is achieved based on a diffraction pattern of the sample. An area corresponding to the Laue circle is segmented using a trained network. The sample is aligned with the charged particle beam by tilting the sample with a zone axis tilt determined based on the segmented area.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: December 28, 2021
    Assignee: FEI Company
    Inventors: John J. Flanagan, Nathaniel Kurtz, Ashley Tilson, Phillip Parker
  • Patent number: 11211226
    Abstract: The present disclosure provides a pattern cross-sectional shape estimation system which includes a charged particle ray device which includes a scanning deflector that scans a charged particle beam, a detector that detects charged particles, and an angle discriminator that is disposed in a front stage of the detector and discriminates charged particles to be detected, and an arithmetic device that generates a luminance of an image, and calculates a signal waveform of a designated region on the image using the luminance. The arithmetic device generates angle discrimination images using signal electrons at different detection angles, and estimates a side wall shape of a measurement target pattern.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: December 28, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Toshiyuki Yokosuka, Hirohiko Kitsuki, Daisuke Bizen, Makoto Suzuki, Yusuke Abe, Kenji Yasui, Mayuka Osaki, Hideyuki Kazumi
  • Patent number: 11205560
    Abstract: An ion implanter includes a beam scanner that performs a scanning with an ion beam in a scanning direction perpendicular to a traveling direction of the ion beam, and a beam profiler that is disposed downstream of the beam scanner and measures a beam current distribution of the ion beam when the scanning by the beam scanner is performed. The beam profiler includes an aperture array that includes a first aperture and a second aperture, a cup electrode array that is disposed to be fixed with respect to the aperture array, the cup electrode array including a first cup electrode and a second cup electrode, and a plurality of magnets.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: December 21, 2021
    Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.
    Inventors: David Edward Potkins, Phillip Thomas Jackle
  • Patent number: 11201033
    Abstract: To provide a charged particle beam device capable of preventing generation of geometric aberration by aligning axes of electrostatic lenses with high accuracy even when center holes of respective electrodes which constitute the electrostatic lens are not disposed coaxially. The charged particle beam device according to the invention includes an electrostatic lens disposed between an acceleration electrode and an objective lens, wherein at least one of the electrodes which constitutes the electrostatic lens is formed of a magnetic body, and two or more magnetic field generating elements are disposed along an outer periphery of the electrode.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: December 14, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Yuta Kawamoto, Akira Ikegami, Masahiro Fukuta
  • Patent number: 11177114
    Abstract: An electrode arrangement for acting on a charged particle beam in a charged particle beam apparatus is described. The electrode arrangement includes a first electrode with a first opening for the charged particle beam; a first spacer element positioned in a first recess provided in the first electrode on a first electrode side for aligning the first electrode relative to a second electrode, the first spacer element having a first blind hole; a first conductive shield provided in the first blind hole; and a contact assembly protruding from the first electrode into the first blind hole for ensuring an electrical contact between the first electrode and the first conductive shield. Further, a contact assembly for such an electrode arrangement, a charged particle beam device with such an electrode arrangement, as well as a method of reducing an electrical field strength in an electrode arrangement are described.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: November 16, 2021
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventors: Matthias Firnkes, Florian Lampersberger, Carlo Salvesen
  • Patent number: 11166472
    Abstract: A devices (10) and method for pasteurizing and/or sterilizing particulate material. The device contain at least one electron source (20) for generating an electron beam and a treatment zone (19) in which the material is pasteurized and/or sterilized by the electron beam. The device (10) comprises a vibration surface (11) which vibrates to convey and individualize the material. The first vibration surface (11) has a plurality of grooves (12) into which the material is conveyed and individualized. The device (10) has a material channel (21) in which the material is pasteurized and/or sterilized by the electron beam in the region of the treatment zone (19). The device (10) has at least one auxiliary channel (22) through which a fluid flows, between the electron source (20) and the material channel (21), and is separated from the material channel (21). A cartridge (24) for pasteurizing and/or sterilizing particulate material is also disclosed.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: November 9, 2021
    Assignee: BÜHLER AG
    Inventors: Nicolas Meneses, Martin Hersche, Alasdair Currie, Niklaus Schönenberger, Thomas Scheiwiller
  • Patent number: 11169177
    Abstract: Methods are described for the economical manufacture of Scanning Probe and Electron Microscope (SPEM) probe tips. In this method, multiple wires are mounted on a stage and ion milled simultaneously while the stage and mounted probes are tilted at a selected angle relative to the ion source and rotated. The resulting probes are also described. The method provides sets of highly uniform probe tips having controllable properties for stable and accurate scanning probe and electron microscope (EM) measurements.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: November 9, 2021
    Assignee: Tiptek, LLC
    Inventors: Joseph W. Lyding, Gregory S. Girolami, Scott P. Lockledge, Jinju Lee
  • Patent number: 11169125
    Abstract: Techniques and apparatus for ion source devices with minimized post-column volumes are described. In one embodiment, for example, an ion source assembly may include a chromatography column in fluid communication with an ion source device, the chromatography column arranged within a minimum distance of the ion source, the minimum distance comprising between about 60 mm and about 150 mm.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: November 9, 2021
    Assignee: Waters Technologies Corporation
    Inventors: Michael O. Fogwill, Curt Devlin, Theodore A. Dourdeville, Jacob N. Fairchild, Geoff C. Gerhardt, Wade P. Leveille, Joseph D. Michienzi, Jeffrey Musacchio
  • Patent number: 11164716
    Abstract: When using a charged particle beam aperture having a ring shape in a charged particle beam device, the charged particle beam with the highest current density immediately above the optical axis, among the charged particle beams is blocked, so that it is difficult to dispose the charged particle beam aperture at the optimal mounting position. Therefore, in addition to the ring-shaped charged particle beam aperture, a hole-shaped charged particle beam aperture is provided, and it is possible to switch between the case where the ring-shaped charged particle beam aperture is disposed on the optical axis of the charged particle beam and the case where the hole-shaped charged particle beam aperture is disposed on the optical axis of the charged particle beam.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: November 2, 2021
    Assignees: Hitachi High-Tech Corporation, Japan Fine Ceramics Center
    Inventors: Shunichi Motomura, Tsunenori Nomaguchi, Tadahiro Kawasaki, Takeharu Kato, Ryuji Yoshida
  • Patent number: 11164677
    Abstract: A system, method, diagnostic and container delivery system for manipulating a target, by manipulating with the quantum coherence of the target. The method includes identifying intrinsic parameters of the target and determining target-tuned design factors based at least partially on the intrinsic parameters. Target-tuned electrons and fields are generated based in part on the target-tuned design factor. The target-tuned electrons and fields are defined by discrete quantized energy levels. The method may include preparing a container to carry the unquantized target-tuned electrons, the container being composed of superconductor quantum dots. The unquantized target-tuned electrons are transferred to the container to form target-tuned artificial atoms having quantized target-tuned electrons, which may be delivered to the target as a manipulating agent. Alternatively, the unquantized target-tuned electrons may be delivered directly to the subject.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: November 2, 2021
    Assignee: SpinQ Biophysics, Inc.
    Inventors: Marc Harris, Deni Hogan
  • Patent number: 11160897
    Abstract: The present invention provides a device for generating ultraviolet (UV) radiation whose wavelength is optimally tuned into the range of 240 to 290 nm, with peak wavelength in the range of 260 to 270 nm, which attains a Peak Germicidal Disinfection Effective Index of nearly 100%, superior to conventional UV lights and lamps. This device comprises a light-emitting diode (LED) matrix, a fan, an LED driver, a base and a motion sensor with programmable sensitivity and time delay. It may further comprise components for thermal protection and active air circulation. When operating, the device emits visible UVA radiation and blue light. With special considerations for user safety, the device effectively protects users from exposure to UV hazards and is safe to use. With the built-in thermal protection, this device may be used with either open or enclosed fixtures.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: November 2, 2021
    Assignee: OLYMPIA LIGHTING, INC.
    Inventor: Ram Shalvi
  • Patent number: 11156460
    Abstract: The present disclosure relates to Superfluid QUantum Interference Devices (SQUIDs) that measure phase differences existing in quasi-particles or matter-wave systems, and the related techniques for their use at room-temperatures. These Bose-Einstein Condensation interferometry techniques include quantum scale metrology devices such as quasi-particle based linear accelerometers, gyroscopes, and Inertial Measurement Units that incorporate such interferometers. In the presence of additive white Gaussian noise, estimates are made for the Bias Instability, Angle Random Walk, and Velocity Random Walk of the device for purposes of quantum inertial sensing. Moreover, this disclosure relates to SQUIDs based on charged quasi-particles that can, in turn, be used to construct quantum computing elements such as quantum transistors, and quasi-particle circuits at room-temperatures. These quasi-particle circuits can be used to build analogs of electronic circuit elements, and offer an alternative to traditional electronics.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: October 26, 2021
    Inventor: Frederick Ira Moxley, III
  • Patent number: 11158494
    Abstract: Correction of an angle of tilt of an ion beam front in a Time of Flight (TOF) mass spectrometer is described. In one aspect, an ion beam front tilt corrector can include an electrode that, when applied with a voltage, defines an equipotential channel of particular dimensions to allow for ions in different transverse positions along a transverse axis of the equipotential channel to have different traversal times.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: October 26, 2021
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Dmitry Grinfeld, Christian Hock, Hamish Stewart