Abstract: A storage compartment apparatus for a door of a vehicle includes an elongated body that extends along an axis. The elongated body includes impact-absorbing elements arranged along the axis and an axially elongated storage compartment opening at an axial end and coextending with the impact-absorbing elements along the axis.
Abstract: Provided is a vehicle body structure including: a front frame member disposed in a front part of a vehicle body; a rear frame member disposed in a rear part of the vehicle body; and paired left and right middle frame members disposed on outer sides, in a vehicle width direction, of the vehicle body, respectively, and extending in a vehicle front-rear direction between the front and rear frame members. Each middle frame member includes: a side sill disposed on an outer side in the vehicle width direction; and a center side member disposed inward, in the vehicle width direction, of the side sill and coupling the front and rear frame members. The center side member extends to shift farther outward in the vehicle width direction as it gets closer to rear of the vehicle. The center side member is set larger in strength than the side sill.
Abstract: A vehicle floor tray is molded from a multiple extrusion polymer sheet such that it has high shear and tensile strength, an acceptable degree of stiffness and a high coefficient of friction on its upper surface. The floor tray design is digitally fitted to a foot well of a particular vehicle such that large areas of at least two upstanding walls of the tray depart from respective surfaces of the foot well by no more than an eighth of an inch.
Abstract: A power supply apparatus for sliding door, comprising a body-side fixing unit fixed to a vehicle body, a door-side fixing unit fixed to a sliding door, and a flat cable having a connector on both ends thereof respectively, arranged to run from the vehicle body through the body-side fixing unit and the door-side fixing unit to the sliding door, wherein the flat cable is used in such a manner that a longitudinal direction in a cross sectional area in at least a bent portion of the flat cable is in accordance with a height direction of the vehicle body.