Patents Examined by Pranesh K Barua
  • Patent number: 11728894
    Abstract: Optical chip-to-chip interconnects may use microLEDs as light sources. The interconnected chips may be on a same substrate. A pair of endpoint chips may each have associated optical transceiver subsystems, with transceiver circuitry in transceiver chips. Optical communications may be provided between the optical transceiver subsystems, with the optical transceiver subsystems in communication with their associated endpoint chips by way of metal layers in the substrate.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: August 15, 2023
    Assignee: AVICENATECH CORP.
    Inventors: Robert Kalman, Bardia Pezeshki, Alexander Tselikov, Cameron Danesh
  • Patent number: 11722221
    Abstract: An optical module includes: photoelectric elements including first terminal groups; an integrated circuit including second terminal groups and ground terminals; a carrier substrate; a housing; and a common ground pad. Further, the carrier substrate is fixed to one surface of the housing, the carrier substrate includes signal wiring parts and a ground wiring part, the ground wiring part includes terminal pattern parts, a common pattern part, and a coupling part, each of the terminal pattern parts being disposed between the corresponding signal wiring parts and electrically connected with one of the ground terminals, the common pattern part being disposed on a side where the common ground pad is provided on the carrier substrate, the coupling part electrically connecting each terminal pattern part and the common pattern part, and the ground terminals of the integrated circuit are electrically connected with the common ground pad through the ground wiring part.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: August 8, 2023
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kazuya Nagashima, Yozo Ishikawa, Atsushi Izawa
  • Patent number: 11716150
    Abstract: An optical receiver capable of substantially measuring the phase and amplitude of a received intensity- or amplitude-modulated optical signal by performing digital-signal processing. In an example embodiment, a DSP of the receiver operates to reduce the detrimental effects of relative phase noise between the optical reference oscillator and optical carrier based on an optical pilot present in the received optical signal. The DSP may employ a sequence of digital filters configured to select a signal component that represents a non-vestigial modulation sideband and then perform signal equalization thereon. The signal equalization may include but is not limited to dispersion compensation. In some embodiments, the optical receiver can be a direct-detection optical receiver. In an example embodiment, the optical reference oscillator and optical carrier are generated using two respective independently running lasers that may or may not be co-located.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: August 1, 2023
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Qian Hu, Robert Borkowski
  • Patent number: 11716557
    Abstract: A reduced-complexity optical packet switch which can provide a deterministic guaranteed rate of service to individual traffic flows is described. The switch contains N input ports, M output ports and N*M Virtual Output Queues (VOQs). Packets are associated with a flow f, which arrive an input port and depart on an output port, according to a predetermined routing for the flow. These packets are buffered in a VOQ. The switch can be configured to store several deterministic periodic schedules, which can be managed by an SDN control-plane. A scheduling frame is defined as a set of F consecutive time-slots, where data can be transmitted over connections between input ports and output ports in each time-slot. Each input port can be assigned a first deterministic periodic transmission schedule, which determines which VOQ is selected to transmit, for every time-slot in the scheduling frame.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: August 1, 2023
    Inventor: Ted H. Szymanski
  • Patent number: 11705971
    Abstract: An optical transmission apparatus outputs a main signal. An optical transmission apparatus superimposes a monitoring signal on an optical signal and outputs it. A submarine branching apparatus includes a return unit configured to return the monitoring signal received from the optical transmission apparatus and is configured to switch an output destination of the main signal received from the optical transmission apparatus to an optical transmission apparatus or the optical transmission apparatus. The optical transmission apparatus is configured to detect the monitoring signal returned from the return unit and notifies the optical transmission apparatus of a result of the detection. The optical transmission apparatus instructs the submarine branching apparatus to switch the output destination of the main signal in accordance with the notification.
    Type: Grant
    Filed: August 15, 2018
    Date of Patent: July 18, 2023
    Assignee: NEC CORPORATION
    Inventors: Ryuji Aida, Eduardo Mateo Rodriguez
  • Patent number: 11700062
    Abstract: A simple, compact and low-cost passive optical transceiver device with four terminals may be used in an optical transmission system with polarization-diversity coherent detection scheme. The transceiver is composed of a first polarization splitter/combiner, a non-reciprocal polarization rotator and a second polarization splitter/combiner. The device simultaneously operates as a transmitter and a receiver with optical signals propagating along opposite directions wherein non-reciprocal polarization rotation leads to distinct effects. The received optical signal is thus split into two orthogonal polarization components directed towards two separate ports.
    Type: Grant
    Filed: December 12, 2021
    Date of Patent: July 11, 2023
    Assignee: Lightel Technologies, Inc.
    Inventors: Shyh-Chung Lin, Hongyu Hu
  • Patent number: 11695475
    Abstract: A test instrument for providing an optics troubleshooting technique of an optical transceiver is disclosed. The test instrument may comprise a processor and a memory, which when executed by the processor, performs the optics troubleshooting technique. The optics troubleshooting technique may include identifying a test signal from the optical transceiver. The optics troubleshooting technique may include determining signal power associated with the signal. The optics troubleshooting technique may further include applying one or more expert mode settings. In some examples, the one or more expert mode settings may be applied in a predefined order until an acceptable BER result is achieved over a predefined test period. In this way, test instrument may determine which of the one or more expert mode settings is responsible for the acceptable BER result.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: July 4, 2023
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Sunitha VeerendraKumar Madala, Michael Scott Koller
  • Patent number: 11695472
    Abstract: Systems and methods include determining which services in a single Optical Transport Unit Cn (OTUCn) that is transmitted in an optical network via a plurality of optical carriers are affected by failed one or more optical carriers of the plurality of optical carriers; continuing to operate the single OTUCn with unaffected one or more optical carriers of the plurality of optical carriers; and adjusting some or all of the services from the failed one or more optical carriers to the unaffected one or more optical carriers.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: July 4, 2023
    Assignee: Ciena Corporation
    Inventors: Trevor John Ibach, Rahim Amarsi, Sebastien Gareau
  • Patent number: 11677472
    Abstract: For optical communications between semiconductor ICs, optical transceiver assembly subsystems may be integrated with a processor. The optical transceiver assembly subsystems may be monolithically integrated with processor ICs or they may be provided in separate optical transceiver ICs coupled to or attached to the processor ICs.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: June 13, 2023
    Assignee: AVICENATECH CORP.
    Inventors: Robert Kalman, Bardia Pezeshki, Alexander Tselikov, Cameron Danesh
  • Patent number: 11675133
    Abstract: An optical add/drop device (100) comprising: a common port (102); an add port (106); a first wavelength selective optical filter (110) configured to: receive an optical signal at an add wavelength from the add port and transmit said optical signal at the add wavelength towards the common port; and receive optical signals from the common port and reflect optical signals not at the add wavelength; a second wavelength selective optical filter (114) configured to receive said optical signals from the common port reflected by the first wavelength selective optical filter and transmit an optical signal at a drop wavelength, different to the add wavelength; a drop port (116); and an optical waveguide (118) configured receive said optical signal at the drop wavelength transmitted by the second wavelength selective optical filter and route said optical signal to the drop port.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: June 13, 2023
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Sergio Mosti, Sergio Lanzone, Marco Assale, Claudio D'Incà, Alberto Deho
  • Patent number: 11670909
    Abstract: The invention relates to a photonic component (1) having at least one semiconductor laser amplifier (200), which has at least one first mirror surface (210a) for coupling and/or decoupling optical radiation (S). The first mirror surface (210a) of the semiconductor laser amplifier (200) is coupled to a photonically integrated chip (100), wherein the chip (100) is arranged such that the chip can emit optical radiation (S) from the chip top side (O100) thereof in the direction of the first mirror surface (210a) and couple said radiation in the semiconductor laser amplifier (200), and wherein the emitting of the radiation (S) away from the chip top side (O100) occurs in the direction of the first mirror surface (210a) at an angle of 90°±20°, in particular perpendicular, to the chip top side (O100).
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: June 6, 2023
    Assignee: SICOYA GMBH
    Inventors: Stefan Meister, Hanjo Rhee
  • Patent number: 11671173
    Abstract: An optical transceiver, for receiving an optical signal on which a monitor signal is superimposed, includes: an extractor configured to extract the monitor signal from the optical signal received; and a reception processor configured to reproduce a monitor data from the monitor signal extracted by the extractor.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: June 6, 2023
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Shogo Amari
  • Patent number: 11662645
    Abstract: A shaping encoder capable of improving the performance of PCS in nonlinear optical channels by performing the shaping in two or more stages. In an example embodiment, a first stage employs a shaping code of a relatively short block length, which is typically beneficial for nonlinear optical channels but may cause a significant penalty in the energy efficiency. A second stage then employs a shaping code of a much larger block length, which significantly reduces or erases the penalty associated with the short block length of the first stage while providing an additional benefit of good performance in substantially linear optical channels. In at least some embodiments, the shaping encoder may have relatively low circuit-implementation complexity and/or relatively low cost and provide relatively high energy efficiency and relatively high shaping gain for a variety of optical channels, including but not limited to the legacy dispersion-managed fiber-optic links.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: May 30, 2023
    Assignee: Nokia Solutions and Networks Oy
    Inventor: Joon Ho Cho
  • Patent number: 11664899
    Abstract: A communication device designed for an interior compartment, for example of a motor vehicle. The device includes a radiofrequency communication module and an interface module which is operationally coupled to the radiofrequency communication module in order to receive a digital signal generated by the radiofrequency communication module, and to modulate an electric power supply signal for at least one lamp, according to the digital signal, in order to generate a modulation of light emitted by the lamp according to the digital signal received from the radiofrequency communication module.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: May 30, 2023
    Assignee: ORANGE
    Inventors: Laurent Marchou, Sylvain Leroux, Micheline Perrufel, Christophe Cutullic, Philippe Dussaume
  • Patent number: 11658750
    Abstract: An optical transmission apparatus outputs a main signal. An optical transmission apparatus superimposes a monitoring signal on an optical signal and outputs it. A submarine branching apparatus includes a return unit configured to return the monitoring signal received from the optical transmission apparatus and is configured to switch an output destination of the main signal received from the optical transmission apparatus to an optical transmission apparatus or the optical transmission apparatus. The optical transmission apparatus is configured to detect the monitoring signal returned from the return unit and notifies the optical transmission apparatus of a result of the detection. The optical transmission apparatus instructs the submarine branching apparatus to switch the output destination of the main signal in accordance with the notification.
    Type: Grant
    Filed: August 15, 2018
    Date of Patent: May 23, 2023
    Assignee: NEC CORPORATION
    Inventors: Ryuji Aida, Eduardo Mateo Rodriguez
  • Patent number: 11652549
    Abstract: An optical antenna may permit a duplex link formed by a transmit, Tx, beam towards a partner optical antenna and a receive, Rx, beam from the partner antenna. The antenna includes: a proximal path including a bidirectional waveguide for duplex propagation of the duplex link from a Tx source of the Tx beam and towards a receiver of the Rx beam; a distal path for a duplex propagation of the duplex link from/towards the partner optical antenna; a beam shaper positioned in the distal path to shape a duplex propagation pattern of the duplex link; and a controller controlling the beam shaper to adaptively shape the propagation pattern to enclose: a first position of the partner antenna at the transmission of the Rx beam; and a second of the partner antenna at the reception of the Tx beam.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: May 16, 2023
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventor: Nicolas Perlot
  • Patent number: 11652565
    Abstract: A redundancy system for a distributed antenna system is provided. The system includes a first communication link, a second communication link, a first communication node and a second communication node. The first communication link traverses first path. The second communication link traverses a second path. The second path is spatially separated from the first path. The first communication node is communicatively coupled to transmit the same signal through both the first communication link and the second communication link. The second communication node has a receiver system that is communicatively coupled to receive the signals transmitted through the first and second communication links. The receiver system is configured to synchronize delay and phase differences between the received signals and then combine the signals together to generate a single output.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: May 16, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Marianna Fabbri, Stefan Eisenwinter
  • Patent number: 11641246
    Abstract: This application provides an optical switching apparatus. The apparatus includes: a first optical switch, L first wavelength division multiplexers/demultiplexers, L second wavelength division multiplexers/demultiplexers, a beam generation apparatus connected to the L first wavelength division multiplexers/demultiplexers, and a detection apparatus connected to the L second wavelength division multiplexers/demultiplexers. One of a plurality of multiplexing ports of the first wavelength division multiplexer/demultiplexer is a signal light port, and a remaining multiplexing port is connected to the beam generation apparatus. A plurality of demultiplexing ports of the first wavelength division multiplexer/demultiplexer are connected to the first optical switch. One of a plurality of multiplexing ports of the second wavelength division multiplexer/demultiplexer is a signal light port, and a remaining multiplexing port is connected to the detection apparatus.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: May 2, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Chunhui Zhang
  • Patent number: 11632606
    Abstract: A network system for a data center is described in which a switch fabric may provide full mesh interconnectivity such that any servers may communicate packet data to any other of the servers using any of a number of parallel data paths. Moreover, according to the techniques described herein, edge-positioned access nodes, optical permutation devices and core switches of the switch fabric may be configured and arranged in a way such that the parallel data paths provide single L2/L3 hop, full mesh interconnections between any pairwise combination of the access nodes, even in massive data centers having tens of thousands of servers. The plurality of optical permutation devices permute communications across the optical ports based on wavelength so as to provide, in some cases, full-mesh optical connectivity between edge-facing ports and core-facing ports.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: April 18, 2023
    Assignee: FUNGIBLE, INC.
    Inventors: Pradeep Sindhu, Satish D Deo, Deepak Goel, Sunil Mekad
  • Patent number: 11616577
    Abstract: An optical signal transceiver in a transistor outline package includes a component base, a laser device, a first wavelength division multiplexing prism and a second wavelength division multiplexing prism, a first photodetector, and a second photodetector. The component base is inside the transistor outline package and supports the laser device, the laser device emitting light to the outside of the transistor outline package. The first and second prisms and the first photodetector and the second photodetector are also located on the component base. Light output as optical signals sequentially pass through the first and second multiplexing prisms. The first input optical signal is transmitted to the first photodetector through the first prism, and the second input optical signal passes through the first prism and is passed on to the second photodetector via the second prism.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: March 28, 2023
    Assignee: SHUNYUN TECHNOLOGY (ZHONG SHAN) LIMITED
    Inventor: Jie Huang