Patents Examined by R. Gordon
  • Patent number: 12005433
    Abstract: A pipettor includes a wash chamber between an upper plate, a lower plate, an upper seal, and a lower seal. The upper and lower seal retain each other and are located between the upper and lower plates. The pipettor includes a gasket located below the lower plate, a pipette tip retained by the gasket, and a piston with a tapered tip that passes through the plates, seals, and gasket into the pipette tip. The upper and lower seal isolate the piston from the wash chamber. The pipettor includes a channel defined by the piston, extending into the pipette tip, and an actuator that advances and retracts the piston. When the actuator retracts the piston such that the piston loses sealing contact with the lower seal and the wash chamber is supplied with wash fluid and pressurized, wash fluid passes through the groove in the upper seal and into the channel.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: June 11, 2024
    Assignee: LGC GENOMICS, LLC
    Inventors: Richard J. Schoeneck, Paul H. Wagner
  • Patent number: 12003145
    Abstract: A rotor assembly includes a rotor plate to rotate around a first axis, a bucket attached to the rotor plate and to rotate around a second axis, and a stop plate to rotate around the first axis between an open position and a closed position. When in the closed position, the stop plate engages the bucket to fix an angular position of the bucket relative to a plane of rotation of the rotor assembly. The rotor assembly further includes a housing for a sensor array component, the housing disposed in the bucket and including a solution inlet, a solution outlet, a transfer basin, a solution retainer disposed between the solution outlet and the transfer basin, and a collection reservoir in fluid communication with the transfer basin. The solution inlet and the solution outlet to engage ports of a flow cell of a sensor array.
    Type: Grant
    Filed: February 2, 2023
    Date of Patent: June 4, 2024
    Assignee: Life Technologies Corporation
    Inventor: Todd Roswech
  • Patent number: 11998915
    Abstract: A microfluidic device includes a substrate and a cover. The substrate has an inlet port, a first microchannel, one or more parking loops, a second microchannel and an outlet port for each microchannel network. The first microchannel is connected to the inlet port, the second microchannel is connected to the outlet port, the parking loops are connected between the first and second microchannels. Each parking loop includes a parking loop inlet, a parking loop output, a fluidic trap connected between the parking loop inlet and the parking loop outlet, and a bypass microchannel connected to the parking loop inlet and the parking loop outlet. The cover is attached to a top of the substrate and has an inlet opening and an outlet opening through the cover for each microchannel network. The inlet and outlet openings of the cover are disposed above the inlet and outlet ports in the substrate.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: June 4, 2024
    Assignee: TEXAS TECH UNIVERSITY SYSTEM
    Inventors: Siva A. Vanapalli, Swastika S. Bithi
  • Patent number: 11994529
    Abstract: The object of the invention is to avoid a decrease in dispensing accuracy of a sample, a reagent, or the like as a temperature changes. In an automatic analyzer, a dispensing nozzle sucks the sample from a sample container holding the sample and discharges the sample to a reaction container. A syringe pump controls an amount of change in a volume of water. A first pipe connects the dispensing nozzle and the syringe pump. An electromagnetic valve flows or stops the water. A second pipe connects the electromagnetic valve and the syringe pump. A branch pipe branches the water. A third pipe connects the electromagnetic valve and the branch pipe. A case accommodates at least the syringe pump, the first pipe, the electromagnetic valve, the second pipe, the branch pipe, and the third pipe. Further, the third pipe includes a heat exchange unit that performs heat exchange of the water.
    Type: Grant
    Filed: April 19, 2023
    Date of Patent: May 28, 2024
    Assignee: Hitachi High-Tech Corporation
    Inventors: Shinji Azuma, Isao Yamazaki, Masashi Fukaya, Takumi Ito
  • Patent number: 11976646
    Abstract: A microfluidic chip pump is provided. The microfluidic chip pump may include: a pump housing comprising a pump cavity, a moveable member arranged in the pump cavity, separating the pump cavity into a first chamber and a second chamber; and an actuator assembly configured to drive the moveable member between a first stable position and a second stable position, changing a volume of the first chamber and a volume of the second chamber. When the moveable member is at the first stable position, the first chamber may reach a minimum volume. When the moveable member is at the second stable position, the first chamber may reach a maximum volume. The microfluidic chip pump may be configured to expel a fixed volume of fluid from the second chamber each time the moveable member is driven from the first stable position to the second stable position.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: May 7, 2024
    Assignee: HEALTELL (GUANGZHOU) MEDICAL TECHNOLOGY CO., LTD
    Inventors: Xin Cheng, Hanguang Zhao, Youwei Jiang, Bob Xu, Yu Liu, Rifei Chen
  • Patent number: 11975328
    Abstract: The assembly includes a docking console and a manifold. The docking console includes a cartridge support surface having a first end and a second end. The manifold has one or more wells defined therein. The docking console further includes a manifold retention bracket to releasably hold the manifold against a fluid cartridge supported on the cartridge support surface at an interface position such that the one or more wells are in fluid communication with the fluid cartridge and a biased seal bar to press the fluid cartridge against the manifold held by the manifold retention bracket. A hydrophilic porous frit disposed within at least one of the wells and is to permit liquid to flow through the outlet aperture but prevent gas from passing through the outlet aperture.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: May 7, 2024
    Assignees: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Bradley Kent Drews, Gudrun Stengel, James Christopher Blake, Mohammed Kafeel Ahamed, Michael Steven Becker, Michael Dangelo, Mark J. Nibbe, Daniel L. Fuller, Oliver Jon Miller
  • Patent number: 11969727
    Abstract: Present invention is related to a tumor microenvironment on chip or a biochip for cell therapy having a carrier, a first cell or tissue culture area and a second cell or tissue area imbedded within the carrier. The present invention provides a biochip successfully cooperating micro fluidic technology and cell culture achieving the goal for detecting or testing the function of cell therapy for cancer or tumor.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: April 30, 2024
    Assignees: China Medical University, China Medical University Hospital
    Inventors: Yi-Wen Chen, Ming-You Shie, Der-Yang Cho, Shao-Chih Chiu, Kai-Wen Kan, Chien-Chang Chen
  • Patent number: 11964271
    Abstract: The present application discloses drop preparation device and drop preparation method and relates to the technical field of biochip. In the drop preparation device, the chip, the temperature control module and the pressure detection unit are provided in the cavity, the temperature control module is configured for adjusting a temperature value in the chip, and the pressure detection unit is configured for detecting a pressure data in the cavity; two chip ports, that is, a sample inlet and an oil inlet are provided at the top of the chip; the perforated cap has a vent hole and is elastically deformed to change a volume of the vent hole. When the perforated cap is directly connected to the oil inlet, the pressing assembly is lifted or lowered to open or cover the vent hole. When the pressing assembly covers the oil inlet, a pressure difference is formed in the chip.
    Type: Grant
    Filed: May 15, 2023
    Date of Patent: April 23, 2024
    Assignee: PILOT GENE TECHNOLOGY (HANGZHOU) CO., LTD.
    Inventors: Jiang Xia, Zhuhai Wang
  • Patent number: 11953479
    Abstract: 4-pyrrolylpyridine, a novel anion sensor, displays a substantial color loss upon addition of sodium sulfite in aqueous solvents. A variety of anions were tested, including halides, phosphates, sulfates, and hydroxide, but all solutions remained unchanged aside from the sulfite, which displayed bleaching. Described here is a method for which the exact concentration of sulfites in a consumer product can be determined. The test is sensitive over a broad range of sulfites, from 0.84 ppm to over 10,000 ppm, and is accurate with a standard deviation of ±0.01 ppm.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: April 9, 2024
    Assignee: The Research Foundation for The State University of New York
    Inventors: Lynn Schmitt, Alistair Lees
  • Patent number: 11946029
    Abstract: A microfluidic device (1) comprises a substrate (10) having a flow input channel (30) in fluid connection with a first fluid port (31) and a flow output channel (40) in fluid connection with a third fluid port (41) and cell channels (20) disposed between the flow input channel (30) and the flow output channel (40). The cell channels (20) comprise a respective obstruction (25) designed to prevent the target cells from passing the respective obstruction (25) and into the flow output channel (40). The microfluidic device (1) also comprises a pre-filter (50) with a filter channel (60) in fluid connection with a first filter port (61) and pre-filter channels (70) adapted to accommodate the target cells. A respective first end (72) of the pre-filter channels (70) is in fluid connection with the filter channel (60) and a respective second end (74) of the pre-filter channels (70) is in fluid connection with the flow input channel (30).
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: April 2, 2024
    Assignee: ASTREGO DIAGNOSTICS AB
    Inventors: Özden Baltekin, Ove Öhman, Martin Lovmar, Johan Elf, Mikael Olsson
  • Patent number: 11946840
    Abstract: An assembly including a cassette having a support layer. At least a portion of the support layer is embedded in a recipient block formed from an agarose gel for securing the recipient block to the cassette. The recipient block has a surface spaced from the support layer and is provided with at least one bore extending from the surface into the recipient block that is adapted to receive a biological sample material. A method for forming an assembly is provided.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: April 2, 2024
    Assignee: Array Science, LLC
    Inventors: Regan Spencer Fulton, William Scott Crawford, Trinh Kiet Hoac
  • Patent number: 11939208
    Abstract: A liquid is efficiently suctioned and discharged from and to a container formed by a plurality of aligned storing portions for storing the liquid, using a plurality of nozzles. Provided is a liquid suction/discharge device including a container support device for supporting a culture container formed by a plurality of aligned storing portions, and a nozzle support device for supporting a plurality of nozzles in a state in which distal ends of the nozzles are directed downward. The nozzle support device includes a nozzle support member that swingably supports the plurality of nozzles using prescribed parts as support points, and the liquid suction/discharge device further includes a nozzle inclination device for causing each of the nozzles to be inclined with respect to the nozzle support member.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: March 26, 2024
    Assignee: SHIBUYA CORPORATION
    Inventor: Noriaki Nishimura
  • Patent number: 11938476
    Abstract: A biochemical analysis system capable of sample preparation and processing can include at least one inlet channel having a non-fouling, slippery surface to autonomously transport a fluid sample to a chamber by a geometry of the at least one inlet channel. The at least one inlet channel can include a first end, which is open and exposed, and a second end connected to the chamber for mixing and reaction of the fluid sample, and the at least one inlet channel can include a converging or diverging angle.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: March 26, 2024
    Assignee: The Penn State Research Foundation
    Inventors: Pak Kin Wong, Tak-Sing Wong, Jing Wang, Hui Li, Yi Lu, Ying Wan
  • Patent number: 11933805
    Abstract: Various embodiments include a system having a pipetting chamber, a set of pipettor cartridges docked in the pipetting chamber, a gantry system mounted on a ceiling within the pipetting chamber, the gantry system including at least one stationary track aligned in a first direction, and a movable track aligned in a second direction distinct from the first direction, the movable track coupled to the at least one stationary track, and a carrier configured to transport each of the set of pipettor cartridges to a pipetting location within the pipetting chamber, the carrier configured to move each pipettor cartridge in a third direction perpendicular to both the first and second directions.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: March 19, 2024
    Assignee: HighRes Biosolutions, Inc.
    Inventors: Michael Nichols, Louis J. Guarracina
  • Patent number: 11933793
    Abstract: A device that includes a first portion, the first portion including at least one fluid channel; a fluid actuator; and an introducer, a second portion, the second portion including at least one well, the well containing at least one material, wherein one of the first or second portion is moveable with respect to the other, wherein the introducer is configured to obtain at least a portion of the material from the at least one well and deliver it to the fluid channel, and wherein the fluid actuator is configured to move at least a portion of the material in the fluid channel.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: March 19, 2024
    Assignee: Zomedica Biotechnologies LLC
    Inventor: James Russell Webster
  • Patent number: 11927577
    Abstract: A chemical indicator solution, an apparatus, and a method for determining concentration of a chemical analyte is provided. In particular, the apparatus provides a simplified and low cost way to determine that a fluid sample contains a minimum recommended concentration of a chemical. Rather than using complex and expensive components or error-prone manual methods to prepare the solution and measure chemical concentrations, the apparatus may allow for the automatic measuring and mixing of the chemical components of the resulting solution through the unique geometry and layout of the apparatus. The resulting solution may contain a chemical indicator which allows for the detection of the concentration of the chemical analyte within the resulting solution using techniques such as color analysis.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: March 12, 2024
    Assignee: CS MEDICAL, LLC
    Inventors: Gregory John Dobbyn, John Jans, Thomas Fischer, Robert Bailis
  • Patent number: 11906526
    Abstract: Systems and methods for automated sample preparation and processing of protein corona are described herein, as well as its application in the discovery of advanced diagnostic tools as well as therapeutic agents.
    Type: Grant
    Filed: August 4, 2023
    Date of Patent: February 20, 2024
    Assignee: SEER, INC.
    Inventors: William Manning, Young Kim, Brandon Kwan-Leong, Hope Liou, Xiaoyan Zhao, Daniel Hornburg, Martin Goldberg
  • Patent number: 11905557
    Abstract: According to various embodiments described herein, a microfluidics-chip based purification device and system for Sanger-sequencing reactions is provided. The device and system allow for the introduction into a sequencing system of a cartridge containing purification technologies specific to the sequencing contaminants or sequencing method where the simplified purification solution of a cartridge allows automation of the sample purification process, reduced consumption of purification reagents, and consistency in sampling by reducing the sampling errors and artifacts. These various embodiments therefore solve the need for a microfluidics-chip-based, Sanger-sequencing reaction purification system for CE devices. The microfluidic chips described can be used as a PCR chip by reorganizing the on-chip reagents, reaction wells and work flow steps.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: February 20, 2024
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Swati Goyal, Achim Karger, Peter Ma, S. Jeffrey Rosner, Ian Walton, Jonathan Wang, Michael Wenz
  • Patent number: 11899027
    Abstract: The present invention relates to methods for the diagnosis of NAFLD in a subject, and for the differential diagnosis of NASH or steatosis in a subject suffering from NAFLD, based on the determination in a sample of metabolic markers, particularly lipid metabolic markers.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: February 13, 2024
    Assignee: RUBIO METABOLOMICS, S.L.U.
    Inventors: Ibon Martinez Arranz, Rebeca Mayo Sanchez, Azucena Castro Espido, Jose Maria Mato De La Paz
  • Patent number: 11899029
    Abstract: The present teachings provide apparatuses and methods for automated handling of samples, e.g., biological or chemical samples. The apparatuses and the methods of the present teachings allow automated performance of various sample manipulation steps without manual intervention. In a preferred embodiment, the present teachings provide apparatuses and methods for automated enrichment of templated beads produced by PCR.
    Type: Grant
    Filed: November 17, 2022
    Date of Patent: February 13, 2024
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Kristopher Barbee, Maximilian Carpino, Ray Wheeling, Nicholas Peter Bajka