Patents Examined by Rajnikant B. Patel
  • Patent number: 10739803
    Abstract: A phase-redundant voltage regulator apparatus includes groups of regulator phases, each having a multi-phase controller (MPC) connected to each regulator phase. The MPC transfers, to control logic, phase fault signals and a pulse-width modulation (PWM) phase control signal received from each dedicated regulator phase of a phase group. Spare regulator phases include output ORing devices to limit current flow into spare regulator phase outputs. Output switching devices are configured to electrically couple spare regulator phase outputs to a common regulator output. Control logic is connected to the phase groups MPC and asserts phase enable signals to, transfers PWM phase control signals to, and receives phase fault signals from the spare regulator phases. The control logic electrically interconnects a spare regulator phase to a phase group including a failed regulator phase in response to receiving a phase fault signal from an MPC.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Michael Lee Miller, Eric B. Swenson, Patrick Egan
  • Patent number: 10732693
    Abstract: A method and apparatus for controlling a power switch are disclosed. A power switch may be coupled between a power supply signal and a virtual power supply signal coupled to a circuit block. The power switch may be configured to couple the power supply signal to the virtual power supply signal based on a first control signal, and reduce a voltage level of the virtual power supply signal to a voltage level less than a voltage level of the power supply signal based on a second control signal. The power switch may be further configured to change a current flowing from the power supply signal to the virtual power supply signal based on a third control signal.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: August 4, 2020
    Assignee: Apple Inc.
    Inventors: Vivekanandan Venugopal, Ajay Kumar Bhatia
  • Patent number: 10715052
    Abstract: An electrical inverter may include a plurality of phase modules to provide a plurality of phase outputs. Two or more of the plurality of phase modules may share a common insulated-gate bipolar transistor.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: July 14, 2020
    Assignee: Caterpillar Inc.
    Inventors: Ahmed Khalil, Jackson Wai, Jesse Gerdes, James Thorne, Amir Saad
  • Patent number: 10715047
    Abstract: A resonant power conversion device includes a primary side circuit, a frequency detecting circuit, a resonant converting circuit, a secondary side circuit, a secondary detecting circuit, and a control circuit. The primary side circuit receives, according to a control signal having a primary frequency, an input power to output a primary side power. The frequency of the primary side power corresponds to the primary frequency. The frequency detecting circuit detects and converts the primary frequency into a corresponding potential. The resonant converting circuit electrically couples the primary side power to output a resonant power. The secondary side circuit converts the resonant power into a secondary side power. The secondary detecting circuit detects the secondary side power and correspondingly generates a voltage signal. The control circuit outputs the control signal according to the voltage signal, and doesn't output the control signal when the corresponding potential is higher than a predetermined level.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: July 14, 2020
    Assignee: CHICONY POWER TECHNOLOGY CO., LTD.
    Inventor: Huan-Chih Chiu
  • Patent number: 10700596
    Abstract: A power supply circuit includes: a coil having a first end that receives an input voltage and a second end; a transistor connected to the second end of the coil; a first capacitor connected to the second end of the coil; and a surge protection circuit connected to the second end of the coil in parallel with the first capacitor. The surge protection circuit includes a diode, a second capacitor, and a resistance. The diode, the second capacitor, and the resistance are connected in series to the second end of the coil.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: June 30, 2020
    Assignee: OMRON Corporation
    Inventors: Masaaki Nagano, Kohei Tanino
  • Patent number: 10686379
    Abstract: A switching power converter circuit comprises an inductor arranged to receive input energy from an input circuit node; a switch circuit coupled to the inductor; a load current sensing circuit element coupled to a regulated circuit node and an output circuit node; a compensation circuit coupled to a compensation circuit node; a control circuit coupled to the compensation circuit node and the switch circuit, the control circuit configured to modulate activation of the switch circuit to regulate a voltage at the regulated circuit node; and a feedforward circuit coupled to the load current sensing circuit element and the compensation circuit, and configured to adjust modulation of the switch circuit according to sensed load current.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 16, 2020
    Assignee: Linear Technology Holding, LLC
    Inventors: Yonghwan Cho, Keith Szolusha, Min Chen
  • Patent number: 10680532
    Abstract: An apparatus, such as a motor drive or other power converter, includes a first controller circuit coupled to at least one serial communications channel and configured to transmit at least one serial communications signal including drive signals and at least one second controller circuit configured to receive the transmitted at least one serial communications, to recover the drive signals therefrom and to transmit the recovered drive signals on respective ones of a plurality of parallel channels to at least one driver circuit that drives semiconductor switches of a power converter. The first controller circuit may be included in a first module, the at least one second controller circuit may be included in at least one second module, and the at least one serial communications channel may include at least one cable (e.g. a fiber optic cable) connecting the first module to the at least one second module.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: June 9, 2020
    Assignee: Eaton Intelligent Power Limited
    Inventors: Hanning Tang, Benjamin Stewart Wells
  • Patent number: 10680529
    Abstract: A method operates a DC-DC voltage converter. A current measurement circuit generates a current signal correlated with a coil current of a coil. A hysteretic switch control system electrically turns off a switch for driving the coil current, if the current signal signals a coil current greater than a peak comparison value, and electrically turns on the switch if the current signal signals a coil current lower than a valley comparison value. An actual value measurement circuit generates an actual value signal correlated with an electrical output variable of the DC-DC voltage converter. A controller unit adjusts the output variable to a prescribed setpoint value and, generates a comparison value signal depending on a control deviation and the switch control system sets an average value of the peak comparison value and generates the valley comparison value from the comparison value signal.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: June 9, 2020
    Assignee: Continental Automotive GmbH
    Inventors: Emil Kovatchev, Christian Stoeger
  • Patent number: 10673343
    Abstract: A diode clamp mixed three-level dual-active full-bridge converter based on a dual active full-bridge converter, an additional control variable is added by replacing two-level bridge arm on the primary side with a diode clamp three-level bridge arm. A control method based on four variables including duty ratios of 0 voltage level and high voltage level of the primary side, duty ratio of 0 voltage level of the secondary side of the diode clamp mixed three-level dual active full-bridge converter, and phase shift ratio between primary and secondary sides of the diode clamp mixed three-level DAB converter; four-degree-of-freedom globally optimized control is realized by coordinating four variables, RMS value of the current is reduced, and operating efficiency of the converter is improved. Closed-loop control of the DAB globally optimized operation is given, which enables the converter to automatically realize globally optimized operation under different operating conditions.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: June 2, 2020
    Assignee: Shanhai Jiao Tong University
    Inventors: Anping Tong, Guojie Li, Lijun Hang, Keyou Wang
  • Patent number: 10658930
    Abstract: The present technique discloses a buck-boost converter. According to a detailed example of the present invention, a number of switching elements of a buck-boost converter is reduced compared with a conventional buck-boost converter, and thereby a buck mode and a boost mode are performed with reduced overall conduction loss and switching loss. In addition, a buck-boost converter that is capable of stepping up and down an input voltage over a wide range using a single control device, that has a simple structure, that has inexpensive manufacturing costs, and that has a high circuit integration density can be realized by configuring the buck-boost converter to connect a two-phase interleaving boost converter unit to a single-phase buck converter unit.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: May 19, 2020
    Assignees: DESTINPOWER INC., Foundation for Research and Business, Seoul National University of Science and Technology
    Inventors: Sewan Choi, Seongjin Oh, Yeonwoo Kim, Daeki Yang, Minho Kwon, Sehyung Jung, Byeonggill Han, Minjae Kim, Minkook Kim
  • Patent number: 10651669
    Abstract: A phase shift control method for a charging circuit is disclosed. The charging circuit includes a primary conversion circuit, a first secondary conversion circuit, and a second secondary conversion circuit. The controller causes a phase angle difference ? between an ON/OFF waveform of power switches in the primary conversion circuit and an ON/OFF waveform of power switches in the first secondary conversion circuit. The controller collects an output current (Io1) and an output voltage (Vo1) of the first secondary conversion circuit, collected by the first secondary current collector and the first secondary voltage collector, carries out comparison and calculation between the collected output current and output voltage and a preset output current and output voltage, and adjusts the magnitude and positive and negative of the phase angle difference ? according to the comparison result.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: May 12, 2020
    Assignee: SHENZHEN VMAX NEW ENERGY CO., LTD.
    Inventors: Jun Liu, Yingying Feng, Shun Yao, Jinzhu Xu
  • Patent number: 10651750
    Abstract: A constant on-time isolated converter comprises a transformer with a primary side and a secondary side. The primary side is connected to an electronic switch and secondary-side is connected to a load and a processor. The processor is connected to a driver on primary side through at least one coupling element and to the electronic switch. The processor receives an output voltage or an output current across the load generating a control signal accordingly. The driver receives the control signal through the coupling element and accordingly changes the ON/OFF state of the electronic switch, regulating the output voltage and the output current via the transformer, where the duration of the ON/OFF state of the electronic switch is determined between the moment control signal changes from negative to positive and the moment it changes from positive to negative to achieve a high-speed load transient response.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: May 12, 2020
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR (CAYMAN) LTD.
    Inventors: Tien-Chi Lin, Chih-Yuan Liu, Yung-Chuan Hsu, Pei-Lun Huang
  • Patent number: 10644594
    Abstract: A control circuit for a DC-DC converter and a DC-DC converter are disclosed. The control circuit includes an integrator coupled to receive a first reference voltage and a first voltage that includes an output voltage for the DC-DC converter and to provide an integrated error signal. A first comparator is coupled to receive the first reference voltage and the first voltage and to provide a dynamic-integration signal that adjusts the integration time constant of the integrator.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: May 5, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kuang-Yao Cheng, Preetam Tadeparthy, Muthusubramanian Venkateswaran, Vikram Gakhar, Dattatreya Baragur Suryanarayana
  • Patent number: 10613570
    Abstract: A bandgap circuit generates a process and temperature independent voltage. The bandgap circuit includes a bandgap core that generates a temperature independent voltage. The bandgap circuit also includes a resistor ladder that is coupled in parallel to the bandgap core and scales the temperature independent voltage into voltage levels proportional to the temperature independent voltage. An output switch of the bandgap circuit connects the output of the bandgap circuit to one of the voltage level that is substantially equal to a desired voltage level. The bandgap circuit may also include a current mirror that outputs a proportional to absolute temperature current.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: April 7, 2020
    Assignee: INPHI CORPORATION
    Inventors: Nicola Codega, Fabio Giunco, Giovanni Cesura
  • Patent number: 10615710
    Abstract: Electric power devices and control methods are provided which automatically select a line voltage or phase voltage of an AC voltage supply. The electric power device includes a switchable circuit, a sensor and a switch control. The switchable circuit connects to the AC voltage supply, and includes multiple switchable elements. The sensor ascertains a voltage level of the AC voltage supply, and the switch control automatically establishes a configuration of the switchable circuit through control of the multiple switchable elements. The switch control couples the electric power device in a line-line (delta) configuration to the AC voltage supply when the voltage level is in a first voltage range, and a line-neutral (wye) configuration when the voltage level is in a second voltage range.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Ahladas, Kevin R. Covi, Luke L. Jenkins, Robert B. Schlak
  • Patent number: 10608552
    Abstract: A boost converter circuit and method of operating the same is provided. The boost converter circuit includes a bridge rectifier configured to convert an alternating current (AC) voltage at a rectifier input to a rectified voltage at a rectifier output; a transistor switch coupled between the bridge rectifier and a DC link capacitor, and configured to receive a control signal in order to regulate a charging and a discharging of the DC link capacitor; a surge voltage detection circuit coupled to the rectifier output, and configured to measure the rectified voltage for detecting a surge event based on the measured rectified voltage; and a gate controller configured to output the control signal to the transistor switch, wherein, upon occurrence of the surge event, the gate controller is configured to turn off the transistor switch for a predetermined delay period via the control signal.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: March 31, 2020
    Assignee: Infineon Technologies Austria AG
    Inventor: Byoungho Choo
  • Patent number: 10601322
    Abstract: A buck converter is disclosed that may operate in a low power mode or a high power mode based on a power requirements of a load. In the high power mode, modifications to increase frequency response include a higher polling frequency for a comparator, a lower impedance divider in a feedback circuit, a higher biasing current for a comparator, and larger switches for providing current to a reactive step-down circuit of the buck converter. In the low power mode these modifications are reversed. The buck converter may make use of an improved strong arm comparator and a circuit for sensing presence of an inductor in the reactive step-down circuit.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: March 24, 2020
    Assignee: AMBIQ MICRO, INC.
    Inventor: Ivan Bogue
  • Patent number: 10601324
    Abstract: A DC-DC converter circuit includes a switched tank converter configured to output a switching waveform. The DC-DC converter circuit further includes a transformer coupled to the switched tank converter to receive the switching waveform output by the switched tank converter across a primary winding of the transformer.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: March 24, 2020
    Assignee: NVIDIA Corp.
    Inventors: Sudhir Shrikantha Kudva, Ahmed Abou-Alfotouh, Nikola Nedovic, John Poulton
  • Patent number: 10594227
    Abstract: A matrix converter system having a current control mode operation is provided. The system includes a matrix converter having a switching matrix. The matrix converter is coupled at its low-voltage side to a generator and at its output load side to a load. A controller having a pulse width modulation (PWM) control circuit is configured to control the matrix converter via its switching matrix to increase energy within the internal inductances of the generator when the switching matrix causes a short circuit. A feed forward calculator is configured to calculate a feed forward output phase angle. The feed forward output phase angle is an estimation of an angle between an output current vector and an output voltage vector that represent feedback signals of current and voltage output by the matrix converter.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: March 17, 2020
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Vladimir Blasko
  • Patent number: 10594220
    Abstract: A chopper section of a power supply device includes a plurality of step-down chopper circuits, and multiphase control of the step-down chopper circuits is performed using gate signals having phases displaced from each other. This shortens the period with which output signals of the step-down chopper circuits are changed. Shortening the period reduces the amount of jitter resulting from a gap between the occurrence of a command signal and a sampling point that is a point in time at which a gate signal is generated. The number of phases of the gate signals equals the number of phases of the step-down chopper circuits. The control of the gate signal generator is asynchronous to feedback control by the controller. Points in time (sampling points) at which gate signals are generated are points in time of generation (sampling points) after a point in time at which the controller calculates a manipulated value.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: March 17, 2020
    Assignee: KYOSAN ELECTRIC MFG. CO., LTD.
    Inventors: Itsuo Yuzurihara, Takeshi Fujiwara, Ryosuke Ohma, Hiroshi Kunitama, Satoshi Kawai, Ryota Suzuki