Patents Examined by Rajnikant Patel
  • Patent number: 9189001
    Abstract: In general, according to one embodiment, a semiconductor device includes a device main body, a semiconductor substrate. The device main body includes a semiconductor substrate mounting part and a first conductor provided around the semiconductor substrate mounting part. The semiconductor substrate includes a DC-to-DC converter control circuit having a detector to detect at least one of a current flowing through the first conductor and a voltage supplied to the first conductor. The semiconductor substrate is disposed on the semiconductor substrate mounting part so that the detector comes close to the first conductor.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Saito, Ryo Wada, Yuichi Goto
  • Patent number: 9185756
    Abstract: A load driving device and system, and a limiting point control method and device. The load driving device comprising: a voltage/current regulative main circuit placed under the control of an output current controller, for use in conducting a voltage conversion on an input voltage, and in supplying electric power to a subsequent load unit; a sampling unit connected to an output terminal of the main circuit, for use in sampling an output feature parameter of the main circuit; the output current controller, for use in controlling a limiting point of the main circuit, and on the basis of the adjustment direction of the limiting point and on changes of the output feature parameters of the main circuit before and after an adjustment, determining a steady working point for the main circuit, and controlling the main circuit to work at the steady working point. The load driving device and system enable an increase in driver reliability and a reduction in circuit complexity.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: November 10, 2015
    Assignee: INVENTRONICS (HANGZHOU), INC.
    Inventors: Liang'an Ge, Guichao Hua, Xiaoli Yao, Yang Liu
  • Patent number: 9178435
    Abstract: A switching power supply is provided including a transformer that transforms an AC voltage converted by a bridge circuit, and outputs the transformed voltage from a center tap between secondary coils, and two second switches that respectively cause both ends of the secondary coils to be brought in contact with and be separated from a fixed electrical potential. By the second switches being switched on/off, the switching power supply outputs the rectified DC voltage from the center tap. The switching power supply further includes two diodes connected to the both ends of the secondary coils, and cause the currents to flow from the both ends, a capacitor that stores the currents caused to flow, and a third switch that is connected between the capacitor and the center tap, in which, by the third switch being turned on, the capacitor is discharged to the smoothing circuit.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: November 3, 2015
    Assignees: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Tsuguo Nishimura
  • Patent number: 9172297
    Abstract: The present disclosure provides a method, includes: a first stepped-impedance transmission line configured to receive a first signal of a first differential signal; a second stepped-impedance transmission line configured to receive a second signal of the first differential signal, where the first stepped-impedance transmission line and the second stepped-impedance transmission line superpose the first signal of the first differential signal on the second signal of the first differential signal to obtain a first frequency multiplied signal; a first inverse stepped-impedance transmission line configured to be inversely ground-coupled with the first stepped-impedance transmission line and grounded at an end near an output end of the first stepped-impedance transmission line; a second inverse stepped-impedance transmission line configured to be inversely ground-coupled with the second stepped-impedance transmission line and grounded at an end near an output end of the second stepped-impedance transmission line.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: October 27, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Xun Luo
  • Patent number: 9170591
    Abstract: A circuit including a low drop-out regulator (LDO) has a current control loop configured and connected to detect whether an external capacitor is connected to the output of the LDO. The current control loop includes a differential amplifier, a current source capable to output different reference currents and a small MOS transistor. The circuit may be operated in an output capacitor detection mode when started and in a regulated voltage source mode otherwise. In the output capacitor detection mode, the small MOS transistor is driven by the differential amplifier and drives the LDO's power MOS transistor depending on a difference between a current through the small MOS transistor and the reference current output by the current source. Components of the current control loop may be used during regulated voltage source mode for short circuit protection.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: October 27, 2015
    Assignee: STMicroelectronics International N.V.
    Inventor: Alexandre Pons
  • Patent number: 9170587
    Abstract: This invention provides a current control semiconductor element that can detect a current with high accuracy in a single IC chip by dynamically correcting changes in a gain a and an offset b, and a control device that uses the current control semiconductor element, the current control semiconductor element has a transistor 4, a current-to-voltage conversion circuit 22 and an AD converter 23 on the same semiconductor chip. A reference current generation circuit 6 superimposes a current pulse Ic on a current of a load 2 and changes a voltage digital value to be output from the AD converter. A gain/offset corrector 8 executes signal processing on change in the voltage digital value caused by the reference current generation circuit 6 to dynamically acquire the gain a and the offset b that are used in an equation that indicates a linear relationship between the voltage digital value output from the AD converter 23 and the current digital value of the load.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: October 27, 2015
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Teppei Hirotsu, Nobuyasu Kanekawa, Itaru Tanabe
  • Patent number: 9164527
    Abstract: The present application discusses low voltage band-gap voltage reference circuit and methods. In an example the circuit can include a current mirror, an operational amplifier adopting an N-Metal-Oxide-Semiconductor (NMOS) input pair structure, a band-gap output circuit, an adaptive adjustment circuit; and two branches of Bipolar Junction Transistor (BJT). The current mirror can be configured to receive an output signal of the operational amplifier and to provide a current to the two branches of BJT. The operational amplifier can be configured to differentially input voltages at the upper ends of the two branches of BJT, to generate the output signal to the current mirror, and to equalize the voltages at the upper ends of the two branches of BJT using a deep negative feedback.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: October 20, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Lei Huang
  • Patent number: 9160250
    Abstract: Aspects of the invention provide an error amplifier that can compare a feedback voltage of an output voltage with a reference voltage to produce a resulting error signal in cooperation with a phase compensating circuit. In some aspects of the invention, an AC detecting circuit makes a decision as to whether a detected input voltage signal is that of a 100 Vac system or that of a 200 Vac system to change the gain of the error amplifier according to the result of the decision. When the voltage signal Vis is lower than the threshold voltage established beforehand, for making the transient response speed of the phase compensating circuit faster, the AC detecting circuit increases the gain of the error amplifier. When the voltage signal is higher than the threshold voltage established beforehand, for making a power factor higher, the AC detecting circuit decreases the gain of the error amplifier.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: October 13, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Jian Chen
  • Patent number: 9154042
    Abstract: There is provided a power supply apparatus including an interleaved active clamp forward converter unit including a first active clamp forward converter and a second active clamp forward converter, and an output unit magnetically coupled to the forward converter unit and having an output path according to a duty ratio of the forward converter unit, wherein the output unit includes a third powering leg electrified when the first active clamp forward converter and the second active clamp forward converter are powered, and an output leg supplying power to a load.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 6, 2015
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Kuk Kim, Chong Eun Kim, Sung Ho Kim, Dong Kyun Ryu
  • Patent number: 9154048
    Abstract: An AC/DC converter system comprises an input circuit for connection to a three-phase AC source. An isolation transformer comprises a symmetrical core with a set of primary windings and first and second sets of secondary windings wound on the symmetrical core providing balanced flux in all three phases and magnetically coupling to the set of primary windings. The first and second sets of secondary windings are phase shifted by select amounts from the set of primary windings. The set of primary windings is connected to the input circuit. An AC/DC converter comprises first, second and third three-phase rectifiers, the first three-phase rectifier is powered by the first set of secondary windings, the second three-phase rectifier is powered by the second set of secondary windings, and the third three-phase rectifier is powered by the input circuit. An output circuit is connected between the AC/DC converter and a DC load.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: October 6, 2015
    Assignee: Yaskawa America, Inc.
    Inventor: Mahesh M. Swamy
  • Patent number: 9154043
    Abstract: A power source device that outputs a DC voltage includes a rectification unit configured to rectify an input pulse voltage, a voltage-current conversion unit disposed on a side where the pulse voltage is input into the rectification unit, a current-voltage conversion unit configured to convert a current from the voltage-current conversion unit into a voltage, and a comparison unit configured to compare the voltage from the current-voltage conversion unit with a reference voltage. An operation of the rectification unit is controlled based on an output from the comparison unit.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: October 6, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Minoru Hayasaki, Hiroshi Mano
  • Patent number: 9148070
    Abstract: A high power control system includes: a single energy source; an energy source management unit configured to manage the energy source; a controller configured to output a PWM control signal under control of the energy source management unit; a plurality of inverters configured to convert a direct current into an alternating current under control of the PWM control signal of the controller; a plurality of filters coupled to output terminals of the inverters; and a plurality of switches configured to regulate connections between the filters and a load under control of a regulation control signal of the controller.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: September 29, 2015
    Assignee: DESTIN POWER INC.
    Inventors: Young Sang Bae, Seong Jin Oh
  • Patent number: 9148053
    Abstract: Transformer flux is monitored to determine if an onset of flux saturation is detected. If flux saturation is not detected, the transformer drive signal is received to a switch that maintains the polarity of the transformer flux. If flux saturation is detected, the transformer drive signal is received by a switch that reverses the polarity of the transformer signal and the transformer flux. This reversal of flux polarity can occur multiple times, during the carrier cycle of the drive signal, without compromising the dynamics of the transformer main control loop or requiring the drive signal to be regenerated.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: September 29, 2015
    Assignee: Hypertherm, Inc.
    Inventors: Girish R. Kamath, Norm LeBlanc, Paul Tillman, Wayne Chin
  • Patent number: 9143052
    Abstract: In aspects of the invention, each three-level inverter unit has an output current detector. The output from each detector is given to connection wires via a resistor, the connection wires connecting the inverter units. The voltage across the resistor is detected and the deviation, or increment, of the current value of the unit concerned from the average value is determined. The rising up edge of the ON pulses for the IGBT to be controlled is delayed, corresponding to the magnitude of the deviation. Thus, the output current is balanced between the inverter units.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: September 22, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Isao Amano
  • Patent number: 9141118
    Abstract: A control circuit of a power converter is provided. The control circuit comprises a PWM circuit, a sample circuit, and emulation circuit. The PWM circuit generates a switching signal for switching an inductor and generating a switching current of the inductor in response to a current feedback signal. The sample circuit is coupled to sample a switching current signal into a capacitor during an on time of the switching signal. The emulation circuit generates a discharge current couple to discharge the capacitor during an off time of the switching signal for generating the current feedback signal. The switching current signal is correlated to the switching current of the inductor, and the discharge current is generated in response to an input voltage of the inductor, an output voltage of the power converter, and the on time of the switching signal.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: September 22, 2015
    Assignee: SYSTEM GENERAL CORPORATION
    Inventors: Ta-Yung Yang, Ying-Chi Chen, Chien-Tsun Hsu, Cheng-Sung Chen
  • Patent number: 9134743
    Abstract: A low-dropout voltage regulator includes a power transistor configured to receive an input voltage and to provide a regulated output voltage at an output voltage node. The power transistor includes a control electrode configured to receive a driver signal. A reference circuit is configured to generate a reference voltage. A feedback network is coupled to the power transistor and is configured to provide a first feedback signal and a second feedback signal. The first feedback signal represents the output voltage and the second feedback signal represents an output voltage gradient. An error amplifier is configured to receive the reference voltage and the first feedback signal representing the output voltage. The error amplifier is configured to generate the driver signal dependent on the reference voltage and the first feedback signal. The error amplifier includes an output stage that is biased with a bias current responsive to the second feedback signal.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 15, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Glovanni Bisson, Marco Flaibani, Marco Piselli
  • Patent number: 9136761
    Abstract: The present invention realized miniaturization of a power supply device using a multiphase system. The power supply device includes, for example, a common control unit, a plurality of PWM-equipped drive units, and a plurality of inductors. The common control unit outputs clock signals respectively different in phase to the PWM-equipped drive units. The clock signals are controllable in voltage state individually respectively. For example, the clock signal can be brought to a high impedance state. In this case, the PWM-equipped drive unit detects this high impedance state and stops its own operation. It is thus possible to set the number of phases in multiphase arbitrarily without using another enable signal or the like.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 15, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Ryotaro Kudo
  • Patent number: 9124195
    Abstract: A method controls a three-phase converter with a voltage intermediate circuit by pulse-width modulation for supplying a polyphase system, in particular a three-phase machine. The converter is operated with at least two different modulation methods which are selected from among the group of modulation methods which includes single-phase switching, two-phase switching and three-phase switching, and for changeovers to be made between the at least two different modulation methods depending on the operating state of the polyphase system.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 1, 2015
    Assignee: Diehl AKO Stiftung & Co. KG
    Inventors: Martin Weinmann, Stefan Zeh, Nicola-Valeriu Olarescu
  • Patent number: 9124189
    Abstract: A converter is suggested comprising a transformer providing a galvanic isolation between a primary side and a secondary side of the converter; at least one switching element; a converter control unit comprising a first pin for controlling the at least one switching element and a second pin for detecting a current signal in the at least one switching element during a first phase; and for detecting an output voltage signal of the secondary side of the converter and an information regarding a current in a secondary winding of the transformer during a second phase.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: September 1, 2015
    Assignee: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Tobias Heuken, Marc Fahlenkamp
  • Patent number: 9117588
    Abstract: A combination converter arrangement and a switching device including such a combination converter arrangement are disclosed. The combination of a current transformer with a core made of ferromagnetic material and a Rogowski coil is referred to as a combination converter, the current transformer being used to supply energy to the electronic tripping unit of the switching device, and the Rogowski coil being used to measure current. In order to make use of the installation space available in the switching device for installing combination converters, a plurality of combination converters are arranged in a common housing to thereby provide a multi-pole combination converter module.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: August 25, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Markus Gross, Thomas Kiendl