Patents Examined by Rebecca Preston
  • Patent number: 8961599
    Abstract: A thin, biocompatible, high-strength, composite material is disclosed that is suitable for use in various implanted configurations. In one aspect, the composite material maintains flexibility in high-cycle flexural applications, making it particularly applicable to high-flex implants such as heart pacing lead or heart valve leaflet. The composite material includes a porous expanded fluoropolymer membrane and an elastomer, wherein the elastomer fills substantially all of the pores of the porous expanded fluoropolymer, and the composite material comprising less than about 80% fluoropolymer by weight.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: February 24, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: William C. Bruchman, Paul D. Gassler, Cody L. Hartman, Peter J. Walsh, Charles F. White
  • Patent number: 8955520
    Abstract: A dual lumen catheter may be provided with one or more stents in a stent-deployment lumen and a wire guide disposed through a wire guide lumen. The wire guide may be directed to a target site in a patient body such as a biliary stricture. The catheter may be directed along the wire guide until it is in or adjacent the target site. A distalmost stent may be advanced out a distal side-facing aperture of the stent-deployment lumen into the target site by a pusher member that advances the stent or that holds the stent in place while the catheter is proximally withdrawn from around the stent. With the wire guide remaining substantially in place, the stent-deployment lumen can be reoriented and the steps repeated to place a second (and, if desired, subsequent) stent(s) next to—and generally parallel with—the first stent.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Cook Medical Technologies LLC
    Inventors: Paul Devereux, Ciarán Toomey, Sharon White
  • Patent number: 8951302
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: February 10, 2015
    Assignees: The General Hospital Corporation, The Charles Stark Draper Laboratory
    Inventors: Howard I. Pryor, Ira Spool, David M. Hoganson, Joseph P. Vacanti, Jeffrey T. Borenstein
  • Patent number: 8945212
    Abstract: A thin, biocompatible, high-strength, composite material is disclosed that is suitable for use in various implanted configurations. The composite material maintains flexibility in high-cycle flexural applications, making it particularly applicable to high-flex implants such as heart pacing lead or heart valve leaflet. The composite material includes at least one porous expanded fluoropolymer layer and an elastomer substantially filling substantially all of the pores of the porous expanded fluoropolymer.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: February 3, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: William C. Bruchman, Paul D. Gassler, Cody L. Hartman, Peter J. Walsh
  • Patent number: 8932346
    Abstract: An expandable medical device having a particle layer disposed over a reservoir containing a therapeutic agent. The particle layer has a first porosity when the medical device is in the unexpanded configuration and a second porosity when the medical device is in the expanded configuration. The particle layer comprises a plurality of micron-sized or nano-sized particles. In certain embodiments, the particles are not connected to each other, and as such, the different porosities are provided by changes in the spacing between the particles as the medical device is expanded/unexpanded. Also disclosed are medical devices having a particle layer, wherein the particle layer comprises a plurality of encapsulated particles, and methods of coating medical devices with particles.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: January 13, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Michael Kuehling, Dominique Seidel, Torsten Scheuermann, Jan Weber
  • Patent number: 8915954
    Abstract: Endoprosthesis for delivery in a body lumen is provided. The endoprosthesis includes an annular element defined by a set of interconnected strut members, each strut member including a first end and a second end. The first end of selected pairs of circumferentially-adjacent strut members of the annular element are interconnected to define apices proximate a first longitudinal side of the annular element and the second end of selected pairs circumferentially-adjacent strut members are interconnected to define apices proximate a second longitudinal side of the annular element. At least one of the selected pairs of circumferentially-adjacent strut members has a modulator disposed proximate the apex defined there between, the modulator having a first mode to allow expansion of the annular element from an unexpanded configuration toward an expanded configuration and a second mode to resist contraction of the annular element from the expanded configuration toward the unexpanded configuration.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: December 23, 2014
    Assignee: Abbott Laboratories
    Inventors: Eugene Young, Russ Borg, David Trask, Travis Richard Yribarren, Erik Eli
  • Patent number: 8915956
    Abstract: An endoluminal prosthesis with a moveable fenestration including a tubular graft body having a proximal end, a distal end, a surface plane at least one fenestration having a perimeter disposed in a sidewall of the tubular body between the proximal end and the distal end, a first biocompatible graft material, and a second biocompatible graft material adjacent to and surrounding the perimeter of the at least one fenestration. The second biocompatible graft material has at least one characteristic different from the first biocompatible graft material and is more flexible than the first biocompatible graft material and is movable relative to the surface plane of the tubular graft body.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: December 23, 2014
    Assignee: Cook Medical Technologies LLC
    Inventors: Darin G. Schaeffer, Shyam Kuppurathanam
  • Patent number: 8915955
    Abstract: A small vessel stent graft with a fixation coupling that has a hyperboloid shape positioned at or near the proximal end of the graft. The coupling may be deployed within the fenestration of a fenestrated graft to provide multi-directional movement without compromising the integrity of the sealing zone.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: December 23, 2014
    Assignee: The Cleveland Clinic Foundation
    Inventors: Karl J. West, Roy K. Greenberg
  • Patent number: 8906084
    Abstract: Embodiments provide methods and systems for treating aneurysms using filling structures filled with a curable medium. An embodiment of a method comprises positioning at least one double-walled filling structure across the aneurysm and filling the structure(s) with a filling medium so that an outer wall conforms to the inside of the aneurysm and an inner wall forms a generally tubular lumen to provide for blood flow. The lumen is supported with a balloon or other expandable device while and/or after filling. The pressure within the structure and/or in the space between an external wall of the structure and the aneurysm wall is monitored and a flow of the medium into the structure is controlled responsive to the pressure. The pressure can also be used to determine a filling endpoint. The medium is hardened while the lumen remains supported by the balloon. The balloon is then removed after the medium hardens.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: December 9, 2014
    Assignee: Nellix, Inc.
    Inventors: Michael A. Evans, Gwendolyn A. Watanabe, Amy Lee, Steven L. Herbowy
  • Patent number: 8888862
    Abstract: A bone implant comprises a core 10 having an integral anchoring structure 12 at its surface. The structure 12 comprises an array of upwardly extending mutually spaced pointed claw-like teeth 14 for digging into bone to which the implant is to be attached, and a network of pores 16 underlying the array and communicating with the exterior of the surface via openings 18 between the teeth, the pores allowing for the circulation of nutrients to promote bone growth.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: November 18, 2014
    Inventors: Patrick McDonnell, Noel Harrison
  • Patent number: 8864837
    Abstract: The present invention relates to a screw-in element having a changing thread profile, in particular an artificial hip joint socket which may be screwed in, and a method for producing screw-in elements of this type. For the purpose of implementing a specific curve of the thread tooth height along the thread extension, it is suggested that the flank of the thread tooth pointing in the screw-in direction be implemented having a constant angle, and the other flank of the thread tooth be implemented having a changing angle. In addition, it is suggested that a type of staircase function made of ramps and steps be superimposed on the thread course to implement a clearance angle and an exposed position of the thread tooth in this way. The practical implementation of the method requires a CNC machine, preferably a CNC lathe, having a so-called B axis and a specific procedure in regard to the programming.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: October 21, 2014
    Inventor: Gerd Hörmansdörfer
  • Patent number: 8858646
    Abstract: A hip prosthesis is provided for insertion into a femur. In one exemplary embodiment, the hip prosthesis includes a stem having a proximal end, a distal end, and a longitudinal axis. This stem may include anterior and posterior locking surfaces which diverge away from the longitudinal axis. A shank portion may extend distally from the anterior and posterior locking surfaces and converge at an angle distally toward the longitudinal axis.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 14, 2014
    Assignee: Zimmer, Inc.
    Inventors: Natalia Fridshtand, Douglas W. Gabel, Steven J. Charlebois, David L. Glass, Steven A. Zawadzki, Jeffrey P. Matney
  • Patent number: 8852262
    Abstract: A stent (10) formed by slitting a tube to create a matrix of struts which are separated from each other by no more than the width of the slit and which lie more or less parallel to each other and to the longitudinal axis of the tube, the slitted tube being radially expandable to a stenting disposition in which the struts exhibit a zigzag pattern in successive loops around the circumference of the stent, the angle each strut makes with the longitudinal axis increasing as the stent diameter increases the zigzag pattern exhibiting a cusp between any two adjacent struts with selected tied cusps of any one loop being connected by a bridge (12) to a facing cusp of the adjacent loop, the bridge extending in a direction parallel to the longitudinal axis of the tube and with intervening free cusps (46, 48), between any two bridge of a loop, not being connected to the adjacent loop the zigzag pattern exhibiting a lengthwise staggering of circumferentially adjacent said slits to the extent that the lengths of two circum
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: October 7, 2014
    Assignee: C. R. Bard, Inc.
    Inventor: Gael Dreher
  • Patent number: 8845715
    Abstract: A total aortic arch reconstruction graft, including a first, hollow cylindrical segment in the shape of an aortic arch, a second, hollow cylindrical segment having a first end joined to the second end of the first segment, and a second end adapted to be inserted into the descending aorta of a patient, the second segment having an expandable outer wall covered with an expandable stent, and a collar having a diameter larger than the diameter of said first segment, the collar located at a juncture where the first end of the second segment is joined to the second end of the first segment, with a plurality of separate, non-absorbable double-armed sutures pre-attached to the collar. A surgical procedure for total replacement of a patient's aortic arch is also disclosed.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: September 30, 2014
    Inventor: Hisham M. F. Sherif
  • Patent number: 8834554
    Abstract: An expandable stent for implanting in a body lumen, such as a coronary artery, peripheral artery, or other body lumen. In one aspect, the stent includes a butterfly pattern to which connecting links are attached. In another aspect, the stent embodies a non-directional structure.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: September 16, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Diem Uyen Ta
  • Patent number: 8828079
    Abstract: Apparatuses, systems, and methods for use in a vascular system. The apparatus include a circulatory valve having a valve frame in which frame members define frame cells. Frame cells include joints in opposing relationship, where the joints transition from a first stable equilibrium state through an unstable equilibrium state to a second stable equilibrium state as the joints are drawn towards each other.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: September 9, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Joseph M. Thielen, Jason P. Hill, Mark L. Jenson, William J. Drasler
  • Patent number: 8828078
    Abstract: A method for endovascularly replacing a patient's heart valve including the following steps: endovascularly delivering an anchor and a replacement valve supported within the anchor to a vicinity of the heart valve in a collapsed delivery configuration, the anchor having grasping elements adapted to grasp tissue in a vicinity of the heart valve; expanding the anchor, thereby rotating the grasping elements; and grasping the tissue with the rotating grasping elements.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: September 9, 2014
    Assignee: Sadra Medical, Inc.
    Inventors: Amr Salahieh, Daniel Hildebrand, Tom Saul
  • Patent number: 8814926
    Abstract: Apparatus and methods for stenting are provided comprising a stent attached to a porous biocompatible material that is permeable to endothelial cell ingrowth, but impermeable to release of emboli of predetermined size. Preferred stent designs are provided, as well as preferred manufacturing techniques. Apparatus and methods are also provided for use at a vessel branching. Moreover, embodiments of the present invention may comprise a coating configured for localized delivery of therapeutic agents. Embodiments of the present invention are expected to provide enhanced embolic protection, improved force distribution, and improved recrossability, while reducing a risk of restenosis and thrombus formation.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: August 26, 2014
    Assignee: Abbott Laboratories Vascular Enterprises Limited
    Inventors: Joost J. Fierens, Silvio R. Schaffner, Marc Gianotti, Gerd Seibold, Randolf von Oepen
  • Patent number: 8808353
    Abstract: A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold, after being deployed by the balloon, provides a crush recovery of about 90% after the diameter of the scaffold has been pinched or crushed by 50%. The scaffold also has a reduced crimped profile and a modification of the scaffold's ring structure at the crowns that contributes to the reduced crimped profile.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: August 19, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Boris Anukhin, Michael H. Ngo, Mikael Trollsas, Syed Hossainy, John E. Papp
  • Patent number: 8808390
    Abstract: A prosthetic component assembly, such as an acetabular cup, includes a shell, a bearing positioner and a bearing. The shell and bearing positioner are configured to facilitate orienting the bearing positioner in multiple orientations relative to the shell and for securing the bearing positioner in a selected orientation of the multiple orientations relative to the shell. The bearing is configured to be received in the bearing positioner at multiple rotational orientations for optimal joint biomechanics. The bearing positioner is selected from among a plurality of lateralized positioners to accommodate the joint anatomy.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: August 19, 2014
    Assignee: DePuy Synthes Products, LLC
    Inventors: Paul Peter Lewis, James Alan Caywood