Patents Examined by Rebecca Stephens
  • Patent number: 11965169
    Abstract: The present invention relates to a safflower plant or part thereof involving the molecular stacking of safflower events IND-1ØØØ3-4×IND-1ØØ15-7, wherein the plant produces and accumulates chymosin in seed under agricultural conditions. A plant seed involving the molecular stacking of safflower events IND-1ØØØ3-4×IND-1ØØ15-7. A consumer product produced from the seed, defined as chymosin, and additionally as ground grain, flour, flakes, oil, biodiesel, biogas, or another biomaterial. Also, the present invention include a recombinant DNA molecule involved in the molecular stacking of safflower events IND-1ØØØ3-4×IND-1ØØ15-7. A DNA polynucleotide primer molecule comprising at least 15 contiguous nucleotides of the DNA molecule involved in the molecular stacking of safflower events IND-1ØØØ3-4×IND-1ØØ15-7, or its complement which is useful in a DNA amplification method to produce a diagnostic amplicon for the event IND-1ØØØ3-4 and IND-1ØØ15-7, or each of them separately IND-1ØØØ3-4 and IND-1ØØ15-7.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: April 23, 2024
    Assignee: AG BIOMOLECULES LLC
    Inventors: Mariana Chiozza, Carlos Dezar, Patricia Miranda, Lucas Paultroni, Martin Salinas
  • Patent number: 11965168
    Abstract: Soybean plants producing soybean seeds comprising leghemoglobin are produced by modifying the genome of the soybean plant. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin are provided. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin and additionally one or more of high oleic acid, low linolenic acid, high protein, low stachyose, low raffinose and low protease inhibitors are provided. Protein compositions comprising leghemoglobin, such as soy isolates and concentrates can be made from the soybean seeds. Additionally, methods for generating and using plants, seeds and protein compositions comprising leghemoglobin are disclosed.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: April 23, 2024
    Assignee: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: Hyeon-Je Cho, John D Everard, Anthony J Kinney, Zhan-Bin Liu, Knut Meyer, Thomas G Patterson, Kevin G Ripp, Bo Shen
  • Patent number: 11965170
    Abstract: This invention relates to compositions and methods for modifying Growth Regulating Factor (GRF) family transcription factors in plants to produce plants having improved phenotypic characteristics including increased growth. The invention further relates to plants produced using the methods and compositions of the invention.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: April 23, 2024
    Assignee: Pairwise Plants Services, Inc.
    Inventor: Brian Charles Wilding Crawford
  • Patent number: 11946062
    Abstract: A gene PpHSP21 with black spot disease resistance is isolated from Pyrus pyrifolia. A nucleotide sequence of the gene PpHSP21 is shown in SEQ ID NO. 1. An amino acid sequence of an encoded protein of the PpHSP21 gene is shown in SEQ ID NO. 2. By constructing the plant overexpression vector and silencing vector of the gene PpHSP21, the gene PpHSP21 is introduced into the plant by the Agrobacterium-mediated genetic transformation method, so that the gene PpHSP21 is able to be overexpressed in the plants, thereby significantly improving black spot disease resistance in plants. The discovery and identification of the gene PpHSP21 provide new genetic resources for stress resistance molecular design and breeding in plants, and to provide new genetic resources for the implementation of green agriculture. The development and utilization of the genetic resources is conducive to reducing agricultural production costs and achieving environmental friendliness.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: April 2, 2024
    Assignee: NANJING AGRICULTURAL UNIVERSITY
    Inventors: Shaoling Zhang, Xiaosan Huang, Caihua Xing, Qinghai Qiao, Zhihua Xie, Likun Lin, Kaijie Qi, Huizhen Dong
  • Patent number: 11878999
    Abstract: This disclosure relates to the field of molecular biology. Provided are novel genes that encode pesticidal proteins. These pesticidal proteins and the nucleic acid sequences that encode them are useful in preparing pesticidal formulations and in the production of transgenic pest-resistant plants. Methods to create or alter pesticidal proteins are provided for altered or enhanced pesticidal activity.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: January 23, 2024
    Inventors: Ellaine Anne Mariano Fox, Naga Kishore Kakani, Kay Walter, Takashi Yamamoto, Yi Zheng
  • Patent number: 11879130
    Abstract: The present disclosure provides the identification of genes involved in sucker growth in tobacco. Also provided are promoters that are preferentially active in tobacco axillary buds. Also provided are modified tobacco plants comprising reduced or no sucker growth. Also provided are methods and compositions for producing modified tobacco plants comprising reduced or no sucker growth.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: January 23, 2024
    Assignee: ALTRIA CLIENT SERVICES LLC
    Inventors: Dongmei Xu, Jesse Frederick, Chengalrayan Kudithipudi, Yanxin Shen, James Strickland, Jaemo Yang
  • Patent number: 11814630
    Abstract: Transgenic INIR19 soybean plants comprising modifications of the DAS81419 soybean locus which provide for facile excision of the modified DAS81419 transgenic locus or portions thereof, methods of making such plants, and use of such plants to facilitate breeding are disclosed.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: November 14, 2023
    Assignee: INARI AGRICULTURE TECHNOLOGY, INC.
    Inventors: Joshua L. Price, Michael Andreas Kock, Michael Lee Nuccio
  • Patent number: 11807863
    Abstract: Cucumber plants (Cucumis sativus) exhibiting increased resistance to Cumber Green Mottle Mosaic Virus (CGMMV) are provided, together with methods of producing, identifying, or selecting plants or germplasm with a CGMMV resistance phenotype. Such plants include cucumber plants comprising recombinant chromosomal segments conferring CGMMV resistance. Compositions, including novel polymorphic markers for detecting plants comprising introgressed virus resistance alleles, are further provided.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: November 7, 2023
    Assignee: SEMINIS VEGETABLE SEEDS, INC.
    Inventors: Melissa C. Cantet, Belgin Cukadar, Maarten de Milliano, Antoon Stekelenburg
  • Patent number: 11795469
    Abstract: The invention provides Scaevola plants that produce at least one flower with a floral phenotype characterised by at least one of: a fused, or partially fused, dorsal slit, a radially, or near radially symmetrical, arrangement of petals, and delayed senescence. The phenotype is a result of reduced or eliminated expression or activity of a CYCLOIDEA2 (CYC2) gene or protein, and or presence of a novel allele designated the FUSED allele. The invention further provides plant cells, plant parts, propagules, seeds and tissue cultures of such plants. The invention further provides methods for the productions and selection of such plants, plant cells, plant parts, propagules, seeds and tissue cultures.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: October 24, 2023
    Assignee: Bonza Botanicals Pty Ltd
    Inventors: Andrew Bernuetz, Koichi Tomomatsu, Kenichi Suzuki
  • Patent number: 11780890
    Abstract: Compositions having pesticidal activity and methods for their use are provided. Compositions include isolated and recombinant polypeptide sequences having pesticidal activity, recombinant and synthetic nucleic acid molecules encoding the pesticidal polypeptides, DNA constructs comprising the nucleic acid molecules, vectors comprising the nucleic acid molecules, host cells comprising the vectors, and antibodies to the pesticidal polypeptides. Nucleotide sequences encoding the polypeptides provided herein can be used in DNA constructs or expression cassettes for transformation and expression in organisms of interest. The compositions and methods provided herein are useful for the production of organisms with enhanced pest resistance or tolerance. Transgenic plants and seeds comprising a nucleotide sequence that encodes a pesticidal protein of the invention are also provided. Methods are provided for producing the polypeptides disclosed herein, and for using those polypeptides for controlling a pest.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: October 10, 2023
    Assignee: AgBiome, Inc.
    Inventors: Rebekah Deter Kelly, Jessica Parks, Rebecca E. Thayer, Francois Torney
  • Patent number: 11781150
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: October 10, 2023
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 11773404
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: October 3, 2023
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 11773398
    Abstract: Transgenic INIR17 maize plants comprising an ecry3.1Ab expression cassette linked to a secondary nopaline synthase terminator element which lack a selectable marker gene and/or which comprise modifications that provide for facile excision of the INIR17 transgenic locus from the maize plant genome are provided. Genomic DNA of INIR17 transgenic plants, detection of INIR17 plants and products thereof, methods of making INIR17 plants, and use of INIR17 plants to facilitate breeding are disclosed.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: October 3, 2023
    Assignee: INARI AGRICULTURE TECHNOLOGY, INC.
    Inventors: Joshua L. Price, Michael Andreas Kock, Michael Lee Nuccio
  • Patent number: 11773397
    Abstract: Transgenic INIR4 maize plants comprising modifications of the DAS59122-7 maize locus which provide for facile excision of the modified DAS59122-7 transgenic locus or portions thereof, methods of making such plants, and use of such plants to facilitate breeding are disclosed.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: October 3, 2023
    Assignee: INARI AGRICULTURE TECHNOLOGY, INC.
    Inventors: Michael Andreas Kock, Joshua L. Price, Michael Lee Nuccio
  • Patent number: 11773405
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: October 3, 2023
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 11746356
    Abstract: Methods comprising DNA constructs and polynucleotides of functional transcription factors for improving photosynthetic capacity, biomass and/or grain yield and stress tolerance in various crop and model plants, dicots and monocots with the C3 or C4 photosynthetic pathways are described herein.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: September 5, 2023
    Assignee: YIELD10 BIOSCIENCE, INC.
    Inventors: Madana M. R. Ambavaram, Mariya Somleva
  • Patent number: 11744250
    Abstract: Pesticidal proteins exhibiting inhibitory, suppressive, and toxic activity against Lepidopteran pest species are disclosed, and include, but are not limited to, TIC4064 and TIC4064 amino acid sequence variants. DNA constructs are provided which contain a recombinant nucleic acid sequence encoding one or more of the disclosed pesticidal proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Lepidopteran infestation are provided which contain recombinant nucleic acid sequences encoding the pesticidal proteins of the present invention. Methods for detecting the presence of the recombinant nucleic acid sequences or the proteins of the present invention in a biological sample, and methods of controlling Lepidopteran species pests using any of the TIC4064 and TIC4064 amino acid sequence variant pesticidal proteins are also provided.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: September 5, 2023
    Assignee: MONSANTO TECHNOLOGY, LLC
    Inventors: David J. Bowen, Catherine A. Chay, Arlene R. Howe, Jason S. Milligan, Christina M. Taylor, Monika R. VanGordon, Kimberly M. Wegener, Brian E. Weiner
  • Patent number: 11732313
    Abstract: The present invention provides a high sweet content stevia plant having a variation at a portion corresponding to SEQ ID NO: 1, a method of producing or screening for the same, etc.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: August 22, 2023
    Assignee: SUNTORY HOLDINGS LIMITED
    Inventors: Tadayoshi Hirai, Kazunari Iwaki, Katsuro Miyagawa, Naoko Okitsu, Saori Takeyama
  • Patent number: 11714090
    Abstract: The invention relates generally to synthetic non-antibody protein scaffolds (synNAPS) that differentially detect or quantitate a target insecticidal protein in a complex biological matrix comprising the target protein and a non-target insecticidal protein and to methods of using the synNAPS in immunoassays, and more particularly to monoclonal antibodies and immunoassays for the differential detection and quantitation of a wild-type crystal protein, such as a wild-type-Cry1Ab, from Bacillus thuringiensis and hybrid crystal proteins, which comprise all or a significant portion of the wild-type Cry protein in complex biological samples comprising both the wild-type Cry protein and one or more of the hybrid Cry proteins.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: August 1, 2023
    Assignee: Syngenta Participations AG
    Inventors: Michele Yarnell, Anne Chevrel, Olivier Kitten, Scott Young
  • Patent number: 11661594
    Abstract: The present disclosure discloses a mutant of a lycopene epsilon cyclase (Lcye) gene crucial in a wheat carotenoid synthesis pathway and use thereof. The present disclosure provides the following proteins: (1) a protein obtained by substituting serine at position 253 of an Lcye-D1 protein with phenylalanine; (2) a derived protein that is obtained by subjecting the protein in (1) to substitution and/or deletion and/or addition of one or more amino acid residues and has the same ability as the protein in (1); (3) a protein that has a homology of more than 99%, more than 95%, more than 90%, more than 85%, or more than 80% with the amino acid sequence defined in any one of (1) and (2) and has the same function as the amino acid sequence; and (4) a fusion protein obtained by attaching a tag to N-terminus and/or C-terminus of the protein in any one of (1) to (3).
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: May 30, 2023
    Assignee: Crop Research Institute, Shandong Academy of Agricultural Sciences
    Inventors: Shengnan Zhai, Jianjun Liu, Haosheng Li, Jianmin Song, Aifeng Liu, Xinyou Cao, Dungong Cheng, Zhendong Zhao, Cheng Liu, Jun Guo, Ran Han, Yan Zi, Faji Li, Xiaolu Wang