Patents Examined by Regina M. DeBerry
  • Patent number: 12208142
    Abstract: Processes for providing a PEGylated protein composition comprising mono-PEGylated protein and oligo-PEGylated protein, and processes for providing mono-PEGylated protein compositions with high yield and productivity are provided. The processes are particularly suitable for providing mono-PEGylated erythropoietin composition. The processes comprise reacting a non-PEGylated protein with a PEGylation reagent to produce a mixture comprising non-PEGylated, mono-PEGylated and oligo-PEGylated protein, subjecting the mixture to a step of anion exchange chromatography, and recycling non-PEGylated protein into further PEGylation reactions.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: January 28, 2025
    Assignee: Hoffmann-La Roche Inc.
    Inventor: Wolfgang Koehnlein
  • Patent number: 12202856
    Abstract: Fusion proteins comprising IL2 and IL2R? (e.g., CIRB), IL2, IL2R? and IL21R (e.g., CIRB21), and/or comprising IL2, IL2R?, and CD28 (e.g., CIRB28); natural killer (NK) cells that express the fusion proteins and methods of use thereof, e.g., to treat subjects with cancer; and regulatory T cells (T-regs) that express a fusion protein comprising IL2, IL2R?, and CD28 and methods of use thereof, e.g., to treat subjects with autoimmune disease or GVHD.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: January 21, 2025
    Assignee: The General Hospital Corporation
    Inventors: Youssef Jounaidi, Stuart Forman, Keith Miller, Joseph F. Cotten
  • Patent number: 12203113
    Abstract: Polypeptides comprising at least one carboxy-terminal peptide (CTP) of chorionic gonadotrophin attached to the carboxy terminus but not to the amino terminus of a coagulation factor and polynucleotides encoding the same are disclosed. Pharmaceutical compositions comprising the polypeptides and polynucleotides of the invention and methods of using and producing same are also disclosed.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: January 21, 2025
    Assignee: OPKO BIOLOGICS LTD.
    Inventors: Udi Eyal Fima, Gili Hart
  • Patent number: 12103967
    Abstract: The present invention relates to bispecific anti-CCL2 antibodies binding to two different epitopes on human CCL2, pharmaceutical compositions thereof, their manufacture, and use as medicaments for the treatment of cancers, inflammatory, autoimmune and ophthalmologic diseases.
    Type: Grant
    Filed: November 14, 2023
    Date of Patent: October 1, 2024
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Jens Fischer, Guy Georges, Anton Jochner, Gregor Jordan, Hubert Kettenberger, Joerg Moelleken, Tilman Schlothauer, Georg Tiefenthaler, Valeria Runza, Meher Majety, Martin Schaefer, Maria Viert, Shu Feng, Wei Shiong Adrian Ho, Siok Wan Gan, Runyi Adeline Lam, Michael Gertz
  • Patent number: 12029780
    Abstract: CTP-modified human growth hormone polypeptides and pharmaceutical formulations and pharmaceutical compositions comprising the same and methods of producing, and using the same are disclosed.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: July 9, 2024
    Assignee: OPKO BIOLOGICS LTD.
    Inventors: Fuad Fares, Udi Eyal Fima
  • Patent number: 12018084
    Abstract: Disclosed herein are human antibody molecules that immunospecifically bind to human CXCR2. The disclosed human antibody molecules are potent and selective antagonists of CXCR2 functions and prevent the recruitment of neutrophils into tissues without strongly depleting circulating neutrophil numbers. Pharmaceutical compositions, nucleic acid molecules, vectors, cells, and uses of the disclosed antibodies are also provided.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: June 25, 2024
    Assignee: Cephalon LLC
    Inventors: Doris Shim Siew Chen, Lynn Dorothy Poulton, Adam Clarke, David Jose Simon Laine, Matthew Pollard, Bridget Ann Cooksey, Anthony Doyle, Jason William Gill
  • Patent number: 11992515
    Abstract: The invention is directed to a method for diagnosing and treating a pulmonary lung disease by detecting a mutant S100A3 protein associated with pulmonary lung disease and by treating a subject with a functional S100A3 protein.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: May 28, 2024
    Assignee: KING FAISAL SPECIALIST HOSPITAL & RESEARCH CENTRE
    Inventors: Eid Abdullah Al Mutairy, Mohammed Khalid, Futwan Al-Mohanna
  • Patent number: 11993630
    Abstract: Herein is reported a method for the purification of a protein comprising erythropoietin and a single poly (ethylene glycol) residue from reaction by-products or not reacted starting material by a cation exchange chromatography method. It has been found that by employing a cation exchange Toyopearl® SP-650 chromatography material and employing a second wash step with an increased pH value compared to the first wash step a fusion protein of erythropoietin and a single poly (ethylene glycol) residue can be obtained in a single step with high purity and yield and suitability for large scale applications.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: May 28, 2024
    Assignee: HOFFMANN-LA ROCHE INC
    Inventors: Roberto Falkenstein, Bernhard Spensberger
  • Patent number: 11981718
    Abstract: The present disclosure relates to a dual-function protein for regulating blood glucose and lipid metabolism, wherein said dual-function protein comprises a human GLP-1 analog and human FGF21. In the present disclosure, provided is a method for preparing said dual function protein, and also provided is the use of said dual-function protein in the preparation of a biological substance for treating type 2 diabetes, obesity, dyslipidemia, fatty liver disease and/or metabolic syndrome. The dual-function protein provided in the present disclosure can synergistically regulate blood glucose and lipid levels in vivo, and satisfy multiple requirements for patients with type 2 diabetes such as lowering blood glucose, relieving hepatic steatosis, reducing body weight and improving metabolic disorders of circulating lipids.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: May 14, 2024
    Assignee: AMPSOURCE BIOPHARMA SHANGHAI INC.
    Inventors: Zhao Dong, Chi Zhou, Xiong Feng, Jiyu Zhang, Shixiang Jia, Qiang Li
  • Patent number: 11969459
    Abstract: The present inventors have found that HMGB1 fragment peptides having a particular amino acid sequence exhibit the effects of improvement of cardiac function, inhibition of cardiomyocyte hypertrophy, inhibition of myocardial fibrosis, and promotion of angiogenesis in an animal model of dilated cardiomyopathy, that the particular HMGB1 fragment peptides also exhibit the effects of improvement of cardiac function, inhibition of cardiomegaly, inhibition of cardiomyocyte hypertrophy, inhibition of myocardial fibrosis, and promotion of angiogenesis in an animal model of ischemic cardiomyopathy caused by old myocardial infarction, and that the particular HMGB1 fragment peptides exhibit the effects of inhibition of cardiomyocyte hypertrophy and inhibition of myocardial fibrosis in an animal model of hypertensive cardiomyopathy.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: April 30, 2024
    Assignees: StemRIM Inc., OSAKA UNIVERSITY
    Inventors: Katsuto Tamai, Yoshiki Sawa, Shigeru Miyagawa, Takashi Kido, Takasumi Goto, Takehiko Yamazaki
  • Patent number: 11945872
    Abstract: The present invention provides monoclonal antibodies that bind to the Activin A type I receptor (ACVR1) protein, and methods of use thereof. In various embodiments of the invention, the antibodies are fully human antibodies that bind to ACVR1. In some embodiments, the antibodies of the invention are useful for inhibiting ACVR1-mediated bone morphogenetic protein (BMP) signal transduction, thus providing a means of treating or preventing a disease, disorder or condition associated with ACVR1.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: April 2, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Vincent J. Idone, Sarah J. Hatsell, Aris N. Economides
  • Patent number: 11931325
    Abstract: Novel compositions that promote hair growth or hair restoration, and compositions that prevent hair loss. Compositions including an iNOS inhibitor as an active ingredient are provided. Advantageous affects for hair growth or hair restoration are obtained when a composition including an iNOS inhibitor as an active ingredient is administered to a mammal. For the iNOS inhibitor, a low-molecular compound, an antibody, or a nucleic acid drug such as an antisense oligonucleotide or siRNA may be used. A method of screening for effective substances for promotion of hair growth or hair restoration or prevention of hair loss is also provided.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: March 19, 2024
    Assignee: EADERM CO., LTD.
    Inventors: Shohei Shinozaki, Kentaro Shimokado
  • Patent number: 11890354
    Abstract: The invention relates generally to activatable antibodies that include a masking moiety (MM), a cleavable moiety (CM), and an antibody (AB) that specifically binds to epidermal growth factor receptor (EGFR), and to methods of making and using these anti-EGFR activatable antibodies in a variety of therapeutic, diagnostic and prophylactic indications.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: February 6, 2024
    Assignee: CYTOMX THERAPEUTICS, INC.
    Inventors: Henry Bernard Lowman, Luc Roland Desnoyers, Shouchun Liu, James William West, Jason Gary Sagert, Olga Vasiljeva, Elizabeth-Edna Mary Menendez
  • Patent number: 11891447
    Abstract: Methods for treating cancer and/or reducing sternness of cancer stem cells in a subject using a CD14 antagonist, which may be an anti-CD14 antibody.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: February 6, 2024
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventor: Huei-Wen Chen
  • Patent number: 11891423
    Abstract: Provided by the present invention are a fusion protein binding to a CD47 protein and an application thereof, wherein the fusion protein is capable of binding to a CD47 protein by using a KD value of 1×10?8M or lower. The fusion protein may specifically block the interaction between a CD47 protein and SIRP? without causing a blood coagulation reaction, and may further inhibit the growth and/or proliferation of tumors or tumor cells.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 6, 2024
    Assignees: HANGZHOU SUMGEN BIOTECH CO., LTD., SUMGEN MAB (BEIJING) BIOTECH CO., LTD.
    Inventors: Ming Lv, Xiaoran Ding, Shiwei Miao, Bin Tan, Xuegong Wang
  • Patent number: 11884719
    Abstract: The present invention provides binding proteins, such as antibodies and antigen-binding fragments, which specifically bind to human IL-36 cytokines, IL-36?, IL-36?, and/or IL-36?, and block the IL-36 stimulated signaling pathways. Compositions comprising such binding proteins and methods of making and using such binding proteins are also provided.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: January 30, 2024
    Assignee: 23andMe, Inc.
    Inventors: Chingwei Vivian Lee, Germaine Fuh-Kelly, Louise Scharf, Tina Thai, Ashka Bharat Patel, Shashank Bharill, Erik Edward Karrer
  • Patent number: 11826401
    Abstract: The present inventors have found that HMGB1 fragment peptides having a particular amino acid sequence exhibit the effects of improvement of cardiac function, inhibition of cardiomyocyte hypertrophy, inhibition of myocardial fibrosis, and promotion of angiogenesis in an animal model of dilated cardiomyopathy, that the particular HMGB1 fragment peptides also exhibit the effects of improvement of cardiac function, inhibition of cardiomegaly, inhibition of cardiomyocyte hypertrophy, inhibition of myocardial fibrosis, and promotion of angiogenesis in an animal model of ischemic cardiomyopathy caused by old myocardial infarction, and that the particular HMGB1 fragment peptides exhibit the effects of inhibition of cardiomyocyte hypertrophy and inhibition of myocardial fibrosis in an animal model of hypertensive cardiomyopathy.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 28, 2023
    Assignees: STEMRIM INC., OSAKA UNIVERSITY
    Inventors: Katsuto Tamai, Yoshiki Sawa, Shigeru Miyagawa, Takashi Kido, Takasumi Goto, Takehiko Yamazaki
  • Patent number: 11773149
    Abstract: This invention provides an NBP158 recombinant protein, a recombinant or synthetic NBP158 mutant protein, a pharmaceutical compositions comprising the NBP158 recombinant protein, and a method for treating metabolic disorders and conditions using such a pharmaceutical composition.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: October 3, 2023
    Inventor: Wentao Zhang
  • Patent number: 11767520
    Abstract: Provided are therapies, including combination therapies, for the treatment of lung inflammation, including interstitial lung diseases (ILDs), which include the use of at least one histidyl-tRNA synthetase (HRS) polypeptide or an expressible polynucleotide that encodes the HRS polypeptide, alone or in combination with at least one immunomodulatory agent.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: September 26, 2023
    Assignee: aTyr Pharma, Inc.
    Inventors: John D. Mendlein, Kathleen Ogilvie
  • Patent number: 11739142
    Abstract: The present invention relates to bispecific anti-CCL2 antibodies binding to two different epitopes on human CCL2, pharmaceutical compositions thereof, their manufacture, and use as medicaments for the treatment of cancers, inflammatory, autoimmune and ophthalmologic diseases.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: August 29, 2023
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Jens Fischer, Guy Georges, Anton Jochner, Gregor Jordan, Hubert Kettenberger, Joerg Moelleken, Tilman Schlothauer, Georg Tiefenthaler, Valeria Runza, Meher Majety, Martin Schaefer, Maria Viert, Shu Feng, Wei Shiong Adrian Ho, Siok Wan Gan, Runyi Adeline Lam, Michael Gertz