Patents Examined by Ricardo E Lopez
  • Patent number: 10774451
    Abstract: A flame resistant fabric includes first yarns including inherently flame resistant fibers and second yarns including wool fibers. The fabric may satisfy one or more performance standards set forth in ASTM F 1506-02, NFPA 2112 and NFPA 70E. The fabric may be a knit or woven fabric, such as a plush or terry knit construction, and one or both sides of the fabric may be napped to form a fleece fabric. The second yarns may include wool and modacrylic fibers, or wool fibers and other inherently flame resistant fibers. The first yarns or second yarns may include sufficient inherently flame resistant fibers such that the fabric has a char length of no more than 4 inches and an afterflame of no more than 2 seconds when tested in accordance with ASTM D6413. The fabric may exhibit a thermal shrinkage of no more than 10% when tested in accordance with NFPA 2112.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: September 15, 2020
    Assignee: Southern Mills, Inc.
    Inventors: Michael T. Stanhope, Charles S. Dunn
  • Patent number: 10774265
    Abstract: It is intended to provide a novel artificial sueded leather having flame retardance, which is excellent inflame retardance, light resistance and abrasion resistance, suffers from no water spot and is free from any halogenated chemical (i.e., one having been treated with a so-called non-halogenated flame retardant), and a method of producing the same. The above artificial sueded leather comprises a thermoplastic synthetic fiber cloth made of a woven fabric, a knitted web or a nonwoven fabric, which has a raised-fiber or napped-fiber surface and has been impregnated with a polyurethane resin, and a flame retardant which contains at least a phosphate compound A having a solubility in water of 1% or less, a vinyl group-containing resin C capable of forming a carbonization skeleton in burning and a water-insoluble thickener D and is imparted to one face of the thermoplastic synthetic fiber cloth.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: September 15, 2020
    Assignee: Toray Industries, Inc.
    Inventors: Keiji Okamoto, Katsuo Sasa, Kazumi Ueno
  • Patent number: 10760186
    Abstract: A bi-component continuous filament has a sheath-core arrangement including a first polymer component forming a sheath and including a polyamide, a polyolefin, or a polyester; a second polymer component forming a core and including a polyamide, a polyolefin, or a polyester; and a binding agent adhering the first polymer component to the second polymer component along a length of the filament such that the filament has a generally uniform cross-sectional shape along the length. The binding agent preferably includes a polyolefin modified by an acid anhydride. Articles made from such bi-component continuous filaments include, for example, bulk continuous filament (BCF) fibers and floor coverings, such as mats, rugs, and carpets.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: September 1, 2020
    Assignee: Welspun Flooring Limited
    Inventors: Dipali Goenka, Utpal Haldar
  • Patent number: 10676845
    Abstract: A composite rod for use in various applications, such as electrical cables (e.g., high voltage transmission cables), power umbilicals, tethers, ropes, and a wide variety of other structural members, is provided. The rod includes a core that is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: June 9, 2020
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley, Richard Stiehm
  • Patent number: 10651478
    Abstract: An article having a titanium, titanium carbide, titanium nitride, tantalum, aluminum, silicon, or stainless steel substrate, a RuO2 coating on a portion of the substrate; and a plurality of platinum nanoparticles on the RuO2 coating. The RuO2 coating contains nanoparticles of RuO2. A method of: immersing the substrate in a solution of RuO4 and a nonpolar solvent at a temperature that is below the temperature at which RuO4 decomposes to RuO2 in the nonpolar solvent in the presence of the article; warming the article and solution to ambient temperature under ambient conditions to cause the formation of a RuO2 coating on a portion of the article; and electrodepositing platinum nanoparticles on the RuO2 coating.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 12, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeremy J Pietron, Michael B. Pomfret, Christopher N. Chervin, Debra R Rolison, Jeffrey W Long
  • Patent number: 10647610
    Abstract: The present invention relates to fiber glass strands, yarns, fabrics, composites, prepregs, laminates, fiber-metal laminates, and other products incorporating glass fibers formed from glass compositions. The glass fibers, in some embodiments, are incorporated into composites that can be used in reinforcement applications. Glass fibers formed from some embodiments of the glass compositions can have certain desirable properties that can include, for example, desirable electrical properties (e.g. low Dk) or desirable mechanical properties (e.g., specific strength).
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: May 12, 2020
    Assignee: PPG Industries Ohio, Inc.
    Inventors: James Carl Peters, Juan Camilo Serrano, Hong Li, Cheryl A. Richards, Steven Joel Parks
  • Patent number: 10633244
    Abstract: The disclosure provides blowable insulation or filling material, and apparatus and methods for making same. The blowable insulation or filling material includes a plurality of discrete elongate floccules each formed of a plurality of fibers. The floccules include a relatively open enlarged medial portion. The floccules also include relatively condensed twisted tail portions extending from opposing ends of the medial portion. The floccules can be utilized by existing garment fill blowing machines without clogging thereof, and include a superior soft hand feel, thermal resistance and launderability. The floccules may be formed by forcing staple fibers through apertures of a rotating hollow drum to partially form the floccule structure within the drum. The partially formed floccules may be retained within the rotating drum for a dwell time to finalize the floccule structure.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: April 28, 2020
    Assignee: PRIMALOFT, INC.
    Inventors: Jon-Alan Minehardt, Vanessa Mason
  • Patent number: 10586633
    Abstract: The present invention relates to a surface modified overhead conductor with a coating that allows the conductor to operate at lower temperatures. The coating is an inorganic, non-white coating having durable heat and wet aging characteristics. The coating preferably contains a heat radiating agent with desirable properties, and an appropriate binder/suspension agent. In a preferred embodiment, the coating has L* value of less than 80, a heat emissivity of greater than or equal to 0.5, and/or a solar absorptivity coefficient of greater than 0.3.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: March 10, 2020
    Assignee: General Cable Technologies Corporation
    Inventors: Cody R. Davis, Sathish Kumar Ranganathan, Ryan Andersen, Vijay Mhetar, William S. Temple, Srinivas Siripurapu, Gordon Baker, James Freestone, Dennis L. Doss
  • Patent number: 10577725
    Abstract: Provided is a fiber containing a composition obtained by mixing a compound having at least a ring structure containing one carbodiimide group, the first nitrogen and second nitrogen thereof being linked together through a linking group, with a polymer compound having an acidic group. Also provided is a fiber structure made thereof. A fiber and a fiber structure, which have improved hydrolysis resistance and from which no free isocyanate compounds are produced, can be provided.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: March 3, 2020
    Assignee: TEIJIN LIMITED
    Inventors: Hideshi Kurihara, Kiyotsuna Toyohara, Shinichiro Shoji, Tomoyoshi Yamamoto, Akimichi Oda
  • Patent number: 10364527
    Abstract: A method is described for reducing the afterflame of a flammable, meltable material. A textile composite is described comprising an outer textile comprising a flammable, meltable material, and a heat reactive material comprising a polymer resin-expandable graphite mixture.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: July 30, 2019
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Dattatreya Panse, Allen B. Maples
  • Patent number: 10308472
    Abstract: A carbon fiber precursor fiber bundle which permits easy bundling of a plurality of small tows into one bundle, is provided with a dividing capability to divide into the original small tows spontaneously at the time of firing, and is suitable for obtaining a carbon fiber that is excellent in productivity and quality. A carbon fiber precursor fiber bundle that has a degree of intermingle of 1 m?1 or less between small tows, consists of substantially straight fibers without imparted crimp, a tow of which straight fibers has a moisture content of less than 10% by mass when housed in a container, and has a widthwise dividing capability to maintain a form of a single aggregate of tows when housed in a container, taken out from the container and guided into a firing step, and to divide into a plurality of small tows in the firing step by the tension generated in the firing step.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: June 4, 2019
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Katsuhiko Ikeda, Nobuyuki Shimozawa
  • Patent number: 10287728
    Abstract: Silk performance apparel and methods of preparing the same are disclosed herein. In some embodiments, silk performance apparel includes textiles, fabrics, consumer products, and other materials that are coated with aqueous solutions of pure silk fibroin-based protein fragments. In some embodiments, coated apparel products exhibit surprisingly improved moisture management properties and increased resistance to microbial growth.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: May 14, 2019
    Assignee: EVOLVED BY NATURE, INC.
    Inventors: Gregory H. Altman, Enrico Mortarino
  • Patent number: 10272621
    Abstract: A deformable, coated radius filler composed of a continuous or elongated fibrous structure and a tacky, resin surface coating formed by pulling a dry, continuous or elongated fibrous structure through a heated resin bath. The coated radius filler has an inner portion that is substantially free of resin and the resin surface coating has a substantially uniform thickness.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: April 30, 2019
    Assignee: CYTEC TECHNOLOGY CORP.
    Inventors: Dominique Ponsolle, Scott Alfred Rogers, Robert Blackburn, Jonathan Meegan
  • Patent number: 10262767
    Abstract: The present disclosure is directed to a plasticizer, a polymeric composition containing the plasticizer, and conductors coated with the polymeric composition. The plasticizer includes a blend of an epoxidized soybean oil and a trans-esterified epoxidized fatty acid methyl ester. The trans-esterified epoxidized fatty acid methyl ester has an oxirane value greater than or equal to 6.8%. The plasticizer, the polymeric composition, and the coated conductor retain color during heat aging.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 16, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Manish K. Mundra, Robert F. Eaton, Abhijit Ghosh-Dastidar
  • Patent number: 9790122
    Abstract: The present invention relates to a glass composition which is resistant to alkalis and to acids, in particular for the preparation of reinforcing glass strands, which comprises the following constituents within the limits defined below, as percentages by weight: SiO2 ?58%, preferably ?65% ZrO2 15-20% R2O (R = Na, K or Li) ?14% K2O ?0.1%, preferably ?0.05%, RO (R = Mg, Ca or Sr) 2.5-6% MgO ?4% TiO2 >1 and ?4% the composition additionally being devoid of F, comprising less than 1% of impurities (Al2O3, Fe2O3 and Cr2O3) and satisfying the following relationships: ZrO2+TiO2?17% ZrO2/TiO2?6 It also relates to the use of the glass strands obtained in the reinforcing of inorganic materials, for example cementitious materials, or organic materials, for example plastics, and to the composites including such strands.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: October 17, 2017
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Emmanuel Lecomte, Eric Dallies, Anne Berthereau
  • Patent number: 9427830
    Abstract: The present invention is a copper-based bonding wire for use in a semiconductor element. The bonding wire of the present invention can be manufactured with an inexpensive material cost, and has a superior PCT reliability in a high-humidity/temperature environment. Further, the bonding wire of the present invention exhibits: a favorable TCT reliability through a thermal cycle test; a favorable press-bonded ball shape; a favorable wedge bondability; a favorable loop formability, and so on. Specifically, the bonding wire of the present invention is a copper alloy bonding wire for semiconductor manufactured by drawing a copper alloy containing 0.13 to 1.15% by mass of Pd and a remainder comprised of copper and unavoidable impurities.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: August 30, 2016
    Assignees: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD., NIPPON MICROMETAL CORPORATION
    Inventors: Tomohiro Uno, Shinichi Terashima, Takashi Yamada, Daizo Oda
  • Patent number: 9403975
    Abstract: Propylene-based resin compositions contain an inorganic filler in a high ratio and are excellent in flexibility, mechanical strength, elongation at break, heat resistance, scratch resistance, whitening resistance and flame retardancy. Shaped articles comprise the compositions. A first propylene-based resin composition of the present invention contains 5 to 64.9% by weight of a propylene-based polymer (A) having a melting point, as measured by differential scanning calorimetry (DSC), in the range of 120° C. to 170° C.; 0 to 59.9% by weight of a propylene-based polymer (B) having a melting point, as measured by differential scanning calorimetry (DSC), of less than 120° C. or having no observed melting point; 0.1 to 30% by weight of a graft-modified propylene-based polymer (C) obtained by graft modifying a propylene-based polymer having a melting point, as measured by differential scanning calorimetry (DSC), of less than 120° C.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 2, 2016
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Hiroshi Uehara, Mariko Harigaya, Masayoshi Yamaguchi
  • Patent number: 9394196
    Abstract: The present invention relates to fiber glass strands, yarns, fabrics, composites, prepregs, laminates, fiber-metal laminates, and other products incorporating glass fibers formed from glass compositions. The glass fibers, in some embodiments, are incorporated into composites that can be used in reinforcement applications. Glass fibers formed from some embodiments of the glass compositions can have certain desirable properties that can include, for example, desirable electrical properties (e.g. low Dk) or desirable mechanical properties (e.g., specific strength).
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 19, 2016
    Assignee: PPG Industries Ohio, Inc.
    Inventors: James Carl Peters, Juan Camilo Serrano, Hong Li, Cheryl A. Richards, Steven Joel Parks
  • Patent number: 9382617
    Abstract: Rod-type, polycrystalline silicon having a rod diameter of >100 mm are obtained by deposition of silicon-containing gas according to the Siemens method, wherein the Si rods are brought into contact with hydrogen at the end of the deposition process during cooling in the reactor, and the cooled Si rods obtained have in perpendicular cross section cracks and/or radial stresses having a defined size.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 5, 2016
    Assignee: Wacker Chemie AG
    Inventor: Mikhail Sofin
  • Patent number: 9364860
    Abstract: A decorated resin molded article that can secure a high durability and can represent a sufficiently realistic metal texture in appearance is provided as follows. A metal thin film is directly formed on a design surface of a substrate by either a physical vapor deposition method or a chemical vapor deposition method to provide a metallic decoration. Additionally, a topcoat layer is formed with a thickness of 10 to 40 ?m on the metal thin film. The topcoat layer comprises a transparent coating film having an adhesive property to both of the substrate and the metal thin film.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 14, 2016
    Assignee: Kojima Industries Corporation
    Inventors: Takane Suzuki, Hirotoshi Matsui, Kaoru Ito, Masumi Noguchi