Patents Examined by Robert B. Mondesi
  • Patent number: 10724008
    Abstract: The invention relates to ketoreductases and the use thereof. The ketoreductases of the invention are particularly useful for enzymatically catalyzing the reduction of ketones to chiral secondary alcohols.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 28, 2020
    Assignee: C-LEcta GmbH
    Inventors: Ramona Schmiedel, Andreas Vogel, Sabrina Koepke, Rico Czaja, Claudia Feller, Hedda Merkens, Kamila Rzeznicka, Daniel Schwarze, Thomas Greiner-Stoeffele, Andreas Petri, Marc Struhalla
  • Patent number: 10717973
    Abstract: The present invention relates to novel mutants with cyclase activity and use thereof in a method for biocatalytic cyclization of terpenes, such as in particular for the production of isopulegol by cyclization of citronellal; a method for the preparation of menthol and methods for the biocatalytic conversion of further compounds with structural motifs similar to terpene.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: July 21, 2020
    Assignee: BASF SE
    Inventors: Michael Breuer, Bernhard Hauer, Dieter Jendrossek, Gabriele Siedenburg, Juergen Pleiss, Demet Sirim, Silvia Fadenrecht
  • Patent number: 10711290
    Abstract: The purpose of the present invention is to provide an organism having an ergothioneine productivity that is capable of easily producing ergothioneine within a short period of time at a high yield, as compared with a conventional technology, and, therefore, enables ergothioneine production on an industrial scale. This purpose can be achieved by a transformed fungus into which a gene encoding enzyme (1) or genes encoding enzymes (1) and (2) have been inserted and in which the inserted gene(s) are overexpressed. (1) an enzyme catalyzing a reaction of synthesizing hercynyl cysteine sulfoxide from histidine and cysteine in the presence of S-adenosyl methionine, iron (II) and oxygen. (2) An enzyme catalyzing a reaction of synthesizing ergothioneine from hercynyl cysteine sulfoxide using pyridoxal 5?-phosphate as a coenzyme.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: July 14, 2020
    Assignee: KIKKOMAN CORPORATION
    Inventors: Seiichi Hara, Keiko Kurosawa, Keiichi Ichikawa
  • Patent number: 10711288
    Abstract: The disclosure relates to omega-hydroxylated fatty acid derivatives and methods of producing them. Herein, the disclosure encompasses a novel and environmentally friendly production method that provides omega-hydroxylated fatty acid derivatives at high purity and yield. Further encompassed are recombinant microorganisms that produce omega-hydroxylated fatty acid derivatives through selective fermentation.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: July 14, 2020
    Assignee: GENOMATICA, INC.
    Inventors: Andreas W. Schirmer, Haibo Wang, Stephen B. Del Cardayre, Zhihao Hu, Louis G. Hom, Baolong Zhu, Cindy Chang, Emanuela E. Popova
  • Patent number: 10711259
    Abstract: Compositions comprising polypeptides having xylanase activity and polypeptides having arabinofuranosidase activity for use in e.g. animal feed. Polypeptides having arabinofuranosidase activity, polypeptides having xylanase activity and polynucleotides encoding the polypeptides. Nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptide.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 14, 2020
    Assignee: Novozymes A/S
    Inventors: Wei Peng, Ninfa Rangel Pedersen, Dan Pettersson, Jens Magnus Ekloff, Soren Nymand-Grarup, Lorena G. Palmen, Rune Nygaard Monrad, Nikolaj Spodsberg, Mary Ann Stringer, Charlotte Blom, Lars Kiemer, Kristian Bertel Romer M. Krogh, Jesper Salomon
  • Patent number: 10704070
    Abstract: The present disclosure relates to the biosynthesis of indigoid dye precursors and their conversion to indigoid dyes. Specifically, the present disclosure relates to methods of using polypeptides to produce indigoid dye precursors from indole feed compounds, and the use of the indigoid dye precursors to produce indigoid dyes.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: July 7, 2020
    Assignee: The Regents of the University of California
    Inventors: John Eugene Dueber, Zachary Nicholas Russ, Tammy Melody Hsu, Terry Don Johnson, Jr., Bernardo Cervantes, Ramya Lakshmi Prathuri, Shyam Pravin Bhakta, Arthur Muir Fong, III, Luke Nathaniel Latimer
  • Patent number: 10688239
    Abstract: The present invention relates to a method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from mammalian blood/use of a device comprising a carbohydrate immobilized on a solid substrate, said carbohydrate having a binding affinity for a pathogenic microbe, an inflammatory cell or an inflammatory protein, for extracorporeal removal of said pathogenic microbe, inflammatory cell or inflammatory protein from mammalian blood/use of a carbohydrate having a binding affinity for a pathogenic microbe, an inflammatory cell or an inflammatory protein, wherein said carbohydrate is immobilized on a solid substrate, in the preparation of a device for treatment of a condition caused or aggravated by said pathogenic microbe, inflammatory cell or inflammatory protein and a method for treatment of a mammalian subject suffering from a condition caused or aggravated by a pathogenic microbe, an inflammatory cell or an inflammatory protein.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: June 23, 2020
    Assignee: ExThera Medical Corporation
    Inventors: Olle Larm, Tomas Bergstrom
  • Patent number: 10689607
    Abstract: Disclosed are an enzymatic batchwise or continuous process for the production of fatty acid alkyl esters for use in the biofuels, food and detergent industries and a system therefor. The process utilizes enzymes immobilized on a hydrophobic resin mixed with a fatty acid source and an alcohol or alcohol donor in the presence of an alkaline or mild alkaline aqueous buffer, or in the presence of water or aqueous solution. The production process for fatty acid alkyl esters is carried out by transesterification or esterification simultaneously or sequentially. The biocatalyst activity is maintained with no significant activity losses in multiple uses and also avoids the accumulation of glycerol and water by-products or other hydrophilic compounds on the biocatalyst.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: June 23, 2020
    Assignee: Trans Bio-Diesel Ltd.
    Inventors: Sobhi Basheer, Maisa Haj, Usama Mohsen, Doaa Shehadeh, Ahmad Hindawi, Emad Masoud, Ahmad Egbarieh, Ramez Masri
  • Patent number: 10689676
    Abstract: The present invention provides mutant microorganism that have higher lipid productivity than the wild type microorganisms from which they are derived while producing biomass at levels that are at least 45% of wild type biomass productivity under nitrogen replete conditions. Particular mutants produce at least 50% as much FAME lipid as wild type while producing at least the amount of biomass produced by wild type cells under nitrogen replete conditions. Also provided are methods of producing lipid using the mutant strains.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: June 23, 2020
    Assignee: Synthetic Genomics, Inc.
    Inventors: Imad Ajjawi, Leah Soriaga, Moena Aqui, Eric R. Moellering
  • Patent number: 10689675
    Abstract: Disclosed are methods of synthesizing racemic 2-(difluoromethyl)-1-(alkoxycarbonyl)-cyclopropanecarboxylic acids and 2-(vinyl)-1-(alkoxycarbonyl)-cyclopropanecarboxylic acids and their salts, such as the dicyclohexylamine salt. Also disclosed are methods for preparing enantioenriched (1R,2R)-1-((tert-butoxycarbonyl)amino)-2-(difluoromethyl)cyclopropane-1-carboxylic acid and esters of the same. These compounds are useful intermediates in the synthesis of viral protease inhibitors.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: June 23, 2020
    Assignee: AbbVie Inc.
    Inventors: Michael J. Abrahamson, Sanjay R. Chemburkar, Angelica B. Kielbus, Russell D. Cink
  • Patent number: 10683473
    Abstract: A bacteria referred to here as Bacillus subtilis 6A-1 is provided, compositions thereof and processes for use of the bacteria, spores, cells, extracts and enzymes. The compositions which comprise the bacteria, spores, cells, extracts and/or enzymes are capable of degrading polysaccharides. Such compositions are capable of degrading cellulose, including plant-produced cellulose, microcrystalline cellulose and carboxymethyl cellulose. The bacteria produces at least two cellulose-degrading protein fractions. Cellulose degrading activity continues across pH2 to pH13.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 16, 2020
    Assignee: Agri-King, Inc.
    Inventors: Gbenga Ayangbile, Mary Grzemski, James F. Tobey, Jr., David Spangler, Lucas Krueger
  • Patent number: 10676764
    Abstract: The present invention relates to a novel and inventive process for the production of sorbitol from D-sucrose.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: June 9, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Mae Joanne Aguila, Hans-Peter Hohmann, Laurent Lefort, Jonathan Alan Medlock, Guenter Pappenberger
  • Patent number: 10676732
    Abstract: The present invention relates to a method for producing a lysine carboxylase mutant strain, characteristics of the mutant strain, a gene encoding the lysine decarboxylase mutant strain, and a method for producing cadaverine using the same. The present invention provides lysine decarboxylase derived from E. coli improved through a protein engineering variation. In addition, the lysine decarboxylase mutant strain of the present invention increases activity, pH stability, and thermal stability at the time of producing cadaverine, thereby reducing production costs, through increasing a yield and productivity.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: June 9, 2020
    Assignee: Seoul National University R&DB Foundation
    Inventors: Byung Gee Kim, Eun Young Hong
  • Patent number: 10676762
    Abstract: Methods and systems for the production of alcohols are described. A two stage process is utilized, where fermentation in a first stage produces an intermediate product, such as an amino acid or organic acid, from a carbon containing feedstock. A second stage produces alcohol by fermentation of this intermediate product.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: June 9, 2020
    Assignee: EASEL BIOTECHNOLOGIES LLC
    Inventors: Yi-Xin Huo, Kwang Myung Cho
  • Patent number: 10676750
    Abstract: In accordance with the invention, isolated nucleic acids, expression methods, host cells, expression vectors, and DNA constructs for producing proteins, and proteins produced using the expression methods are described. More particularly, nucleic acids isolated from Pichia pastoris wherein the nucleic acids have promoter activity are described. The invention also relates to expression methods, host cells, expression vectors, and DNA constructs, for using the Pichia pastoris promoters to produce proteins and polypeptides, and to the proteins and polypeptides produced using the expression methods.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: June 9, 2020
    Assignee: Biogrammatics, Inc.
    Inventors: Ilya I. Tolstorukov, James M. Cregg, Thomas G. Chappell, Knut R. Madden
  • Patent number: 10676406
    Abstract: Hopanoids, hopanoids-producing nitrogen-fixing bacteria, and related formulations, systems and methods are described herein. In particular, hopanoids alone or in combination with hopanoid-producing nitrogen-fixing bacteria can be used as biofertilizer to stimulate plant growth and yield with enhanced tolerance to diverse stresses found in plant-microbe symbiotic microenvironments.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: June 9, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Dianne K. Newman, Gargi Kulkarni, Brittany Jo Belin, Eric Giraud, Antonio Molinaro, Alba Silipo
  • Patent number: 10669532
    Abstract: The invention relates to a recombinant strain of Bacillus subtilis, wherein pyruvate carboxylase BalpycA, glyceraldehyde-3-phosphate ferredoxin dehydrogenase gor, isocitrate NAD+ dehydrogenase icd, malate quinone dehydrogenase mqo, pyruvate ferredoxin oxidoreductase porAB and nitrogenase ferritin cyh are integrated and expressed in the recombinant strain. The invention also discloses use of the recombinant strain in fermentation production of acetylglucosamine. The recombinant Bacillus subtilis of the invention eliminates the central carbon metabolism overflow of the Bacillus subtilis and balances the intracellular reducing force, and the fermentation yield of acetylglucosamine is greatly improved.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: June 2, 2020
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Long Liu, Yang Gu, Jieying Deng, Jian Chen, Guocheng Du, Jianghua Li
  • Patent number: 10662453
    Abstract: Methods that may be used for the manufacture of the chemical compound (S)-norcoclaurine, (S)-norlaudanosoline, and (S)-norcoclaurine or (S)-norlaudanosoline synthesis intermediates are provided. (S)-Norcoclaurine, (S)-norlaudanosoline, and (S)-norcoclaurine or (S)-norlaudanosoline synthesis intermediates are useful as precursor products in the manufacture of certain medicinal agents.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: May 26, 2020
    Assignee: Willow BioSciences Inc.
    Inventor: Peter James Facchini
  • Patent number: 10660972
    Abstract: Described herein are methods of making targeting peptides conjugated to a recombinant lysosomal enzyme by modifying the amino (N)-terminus and one or more lysine residues on a recombinant human lysosomal enzyme using a first crosslinking agent to give rise to a first crosslinking agent modified recombinant human lysosomal enzyme, modifying a lysine or cysteine within a short extension linker at the carboxyl (C)-terminus on a variant IGF-2 peptide having a short extension linker using a second crosslinking agent to give rise to a second crosslinking agent modified variant IGF-2 peptide, and then conjugating the first crosslinking agent modified recombinant human lysosomal enzyme to the second crosslinking agent modified variant IGF-2 peptide containing a short extension linker. Also described herein are conjugates synthesized using the methods disclosed herein. Also described herein are treatment methods using the disclosed conjugates.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: May 26, 2020
    Assignee: Amicus Therapeutics, Inc.
    Inventor: Hung Do
  • Patent number: 10654841
    Abstract: This invention claims processes that comprise the appending of nucleotides having a 3?-ONH2 moiety to the 3?-ends of oligonucleotide primers using 3?-deoxynucleoside triphosphates of 2?-deoxynucleoside derivatives that have, instead of a 3?-OH moiety, a 3?-ONH2 moiety, where the nucleotides contain non-standard nucleobases.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 19, 2020
    Inventors: Steven A Benner, Nicole A Leal