Patents Examined by Robert B. Mondesi
  • Patent number: 11396666
    Abstract: A method for producing a compound represented by formula (3) including bringing a carbon-carbon double bond reductase, a microorganism or cell having an ability to produce the enzyme, a processed product of the microorganism or cell, and/or a culture solution containing the enzyme which is obtained by culturing the microorganism or cell, and a carbonyl reductase, a microorganism or cell having an ability to produce the enzyme, a processed product of the microorganism or cell, and/or a culture solution containing the enzyme which is obtained by culturing the microorganism or cell into contact with a compound represented by formula (1) to obtain a compound represented by formula (3):
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: July 26, 2022
    Assignee: API CORPORATION
    Inventors: Haruka Sasano, Takanobu Iura, Kenji Oki
  • Patent number: 11396646
    Abstract: Polynucleotides encoding corresponding polypeptides capable of glycosylating steviol at its C-19 position to produce a steviol glycoside, an expression vector including such a polynucleotide, a method for producing a steviol glycoside by culturing a recombinant host cell containing such an expression vector under conditions in which the cell expresses the UDP-glycosyltransferase from the polynucleotide, and a method for producing a steviol glycoside by contacting a composition including steviol with a recombinant UDP-glycosyltransferase. The steviol glycoside can be steviol-19-O-glycoside. The recombinant host cell containing such an expression vector can be a bacterial cell, a plant cell, or a fungal cell, an animal cell, or a multicellular organism such as a plant.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: July 26, 2022
    Inventors: Xu Li, Han-Yi Chen, Nickolas Anderson, Amanda Waters
  • Patent number: 11390889
    Abstract: A method for manufacturing 1,3-propanediol includes culturing, in the presence of a saccharide and formaldehyde to produce 1,3-propanediol, a microorganism having the following genes: (a) a first gene encoding an enzyme that catalyzes an aldol reaction between pyruvic acid and aldehydes; (b) a second gene encoding an enzyme that catalyzes a decarboxylation reaction of ?-keto acids; and (c) a third gene encoding an enzyme that catalyzes a reduction reaction of aldehydes, is provided.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: July 19, 2022
    Assignees: Green Earth Institute Co., Ltd., Natural Beauty, Limited
    Inventors: Keisuke Yamamoto, Atsunari Tsuchisaka, Shuhei Nakane, Toru Nakayashiki
  • Patent number: 11390856
    Abstract: The present invention relates to variant of Family A polymerases able to synthesize a nucleic acid fragment without template and to incorporate a reversible modified terminator nucleotide during the nucleic acid fragment synthesis. The present invention further relates to uses thereof for enzymatic synthesis of nucleic acid molecules.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: July 19, 2022
    Assignee: DNA Script
    Inventors: Thomas Ybert, Elise Champion, Omar Vivar, Ahmed Said
  • Patent number: 11390894
    Abstract: The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: July 19, 2022
    Assignee: CysBio ApS
    Inventors: Christian Bille Jendresen, Alex Toftgaard Nielsen
  • Patent number: 11390897
    Abstract: The present invention relates to a method including culturing a C1 compound-assimilating bacterium, which is a methylotroph, and/or a yeast by using a medium comprising, for example, a C1 compound and/or glycerol as a carbon source, to thereby produce EGT.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 19, 2022
    Assignee: National University Corporation Okayama University
    Inventor: Akio Tani
  • Patent number: 11384368
    Abstract: The invention relates to a recombinant yeast comprising a recombinant yeast comprising a nucleotide sequence coding for a glycerol dehydrogenase, a nucleotide sequence coding for a ribulose-1,5-biphosphate carboxylase oxygenase (EC 4.1.1.39); a nucleotide sequence coding for a phosphoribulokinasey (EC 2.7.1.19); a nucleotide sequence allowing the expression of a glucoamylase (EC 3.2.1.20 or 3.2.1.3); and optionally a nucleotide sequence coding for a glycerol transporter. This cell can be used for the production of ethanol and advantageously produces little or no glycerol.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: July 12, 2022
    Assignee: DSM IP ASSETS B.V.
    Inventors: Paulus Petrus De Waal, Ingrid Maria Vugt-Van Lutz
  • Patent number: 11384370
    Abstract: The present disclosure relates to a microorganism for producing a mycosporine-like amino acid, and a method for producing a mycosporine-like amino acid using the microorganism. The microorganism of the present disclosure shows an improved ability for producing a mycosporine-like amino acid and thus can be effectively used in the production of a mycosporine-like amino acid.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: July 12, 2022
    Assignee: CJ CHEILJEDANG CORPORATION
    Inventors: Sol Kim, Kyusung Lee, Joo Hee Lee, Jong-cheol Seok, Jae Woo Jang
  • Patent number: 11384369
    Abstract: The present invention provides biochemical pathways, glyoxylate producing recombinant microorganisms, and methods for the production and yield improvement of glycolic acid and/or glycine via a reverse glyoxylate shunt. The reverse glyoxylate shunt comprises an enzyme that catalyzes the carboxylation of phosphoenol pyruvate (PEP) to oxaloacetate (OAA), or an enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate (OAA) or an enzyme that catalyzes the carboxylation of pyruvate to malate or a combination of any of the previous reactions; an enzyme that catalyzes the conversion of malate to malyl-CoA; an enzyme that catalyzes the conversion of malyl-CoA to glyoxylate and acetyl-CoA; and optionally an enzyme that catalyzes the conversion of oxaloacetate (OAA) to malate. Glyoxylate is reduced to produce glycolate. Alternatively, glyoxylate is converted to glycine.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: July 12, 2022
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Felipe Galzerani, Paulo Moises Raduan Alexandrino
  • Patent number: 11377677
    Abstract: A method for producing a recombinant protein of interest (POI) is provided, comprising the steps of (a) culturing cells in a cell culture medium to express said POI by adding a feed comprising at least one substrate to said cell culture, (b) applying a feeding strategy based on calculating, setting and optionally controlling the specific substrate uptake rate qs of the cells during the induction phase and/or production phase of the POI, wherein qs is set to be close to the maintenance rate of the cell culture; and (c) isolating said POI from the cell culture.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: July 5, 2022
    Assignee: LONZA LTD
    Inventors: Wieland Reichelt, Christoph Herwig, Julian Kager, Patrick Sagmeister, Matthias Funke
  • Patent number: 11377650
    Abstract: The present invention relates to isolated polypeptides having D-psicose 3-epimerase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 5, 2022
    Assignee: Novozymes A/S
    Inventors: Xinyu Shen, Randall Scott Deinhammer, James Ron Huffman, Kendra Stallings, Tine Hoff, Jesper Salomon, Anne Goldbech Olsen
  • Patent number: 11370815
    Abstract: The present disclosure relates to methods for producing recombinant proteins, as well as compositions used in and produced by such methods. Specifically, the present disclosure relates to methods for producing high secreted yields of recombinant proteins, and the compositions provided herein include recombinant host cells that comprise polynucleotide sequences encoding proteins operably linked to at least 2 distinct secretion signals.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: June 28, 2022
    Inventors: Joshua Kittleson, Thomas Stevens, Rena Hill, Carlos Gustavo Pesce
  • Patent number: 11371066
    Abstract: Methods, compositions, and cells for generating acyl alcohols. Compositions comprising acyl alcohols. Methods of cleaving acyl amino acids and/or acyl alcohols to generate free fatty acids, free amino acids, and/or free alcohols.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: June 28, 2022
    Assignee: Modular Genetics, Inc.
    Inventor: Kevin A. Jarrell
  • Patent number: 11365417
    Abstract: Described herein are devices and methods for increasing the production of steviol glycosides, which have industrial and economic value. The steviol glycosides produced by the devices and methods disclosed herein do not require the ultra purification that is common in conventional or commercial methods and do not have a bitter aftertaste, making them better suited as flavor-enhancing additives to food, pharmaceutical, and nutritional supplement products.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: June 21, 2022
    Assignee: Bio Capital Holdings, LLC
    Inventor: Raul Cuero Rengifo
  • Patent number: 11365224
    Abstract: Three-dimensional, living, self-regenerative structures of predetermined geometry comprising solidified print material comprising a biofilm of Bacillus subtilis comprise a TasA-R protein, wherein R is a recombinant, heterologous functional group, wherein the TasA-R provides a preferably tunable physiochemical property like viscosity, reactivity, affinity as a function of the R group.
    Type: Grant
    Filed: February 7, 2021
    Date of Patent: June 21, 2022
    Assignee: ShanghaiTech University
    Inventors: Chao Zhong, Jiaofang Huang, Suying Liu, Chen Zhang
  • Patent number: 11359219
    Abstract: The invention provides a transaminase mutant and application thereof, wherein the amino acid sequence of the transaminase mutant is formed after mutation of the amino acid sequence as shown in SEQ ID NO: 1, and mutated amino acid sites comprise T7C+S47C sites. The transaminase mutant having the mutation sites can be further prepared into an immobilized enzyme through an immobilization technology, the immobilized enzyme has relatively high activity and high stability, can be recycled for multiple times, and is applicable to continuous flow reaction in a packed bed.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: June 14, 2022
    Assignee: ASYMCHEM LIFE SCIENCE (TIANJIN) CO., LTD
    Inventors: Hao Hong, Gage James, Jiangping Lu, Xingfu Xu, Yuxia Cui, Na Zhang, Xuewu Dong, Wenyan Yu, Xin Huang, Mingmin Hao, Yulei Ma, Yibing Cheng, Jiadong Zhao
  • Patent number: 11352653
    Abstract: Provided is a method for preparing rebaudioside N using an enzymatic method, comprising using rebaudioside A or rebaudioside J as a substrate, and making the substrate, in the presence of a glycosyl donor, react under the catalysis of a UDP-glycosyl-transferase and/or a UDP-glycosyltransferase-containing recombinant cell to generate rebaudioside N.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: June 7, 2022
    Assignee: PEPSICO, INC.
    Inventors: Alex Tao, Guoqing Li, Wenxia Wang, Leilei Zheng, Chunlei Zhu, Xiaoliang Liang, Kuikiu Chan
  • Patent number: 11352650
    Abstract: The invention provides a genetically modified micro-organism for intracellular biosynthesis of a cellular metabolite, comprising a synthetic error correction system having a penalty gene, whose expression leads to arrested growth or cell death (e.g. a toxin gene) in combination with a survival gene, whose expression provides an antidote that restores cell viability and normal growth (e.g. a cognate antitoxin gene). Alternatively, the system has a survival gene, alone, whose expression is essential for growth (i.e. essential gene). The synthetic error correction system further comprises a biosensor, whose function is to induce expression of the survival gene which leads to cell growth, only, when the cell produces a pre-defined level of a given metabolite.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 7, 2022
    Assignee: DANMARKS TEKNISKE UNIVERSITET
    Inventors: Peter Rugbjerg, Kira Sarup-Lytzen, Morten Sommer
  • Patent number: 11345941
    Abstract: This application relates to biological pharmacy and biochemical engineering, and more particularly to a method of preparing a (S)-1-benzyl-1,2,3,4,5,6,7,8-octahydroisoquinoline compound. This method includes: subjecting a 1-benzyl-1,2,3,4,5,6,7,8-octahydroisoquinoline raceme as a substrate to selective oxidation in the presence of a monoamine oxidase and the non-selective reduction to prepare the (S)-1-benzyl-1,2,3,4,5,6,7,8-octahydroisoquinoline compound, where the monoamine oxidase has an amino acid sequence as shown in SEQ ID NO: 1 or an amino acid sequence having an identity of more than 80% with SEQ ID NO: 1. The kinetic resolution is carried out in the presence of the monoamine oxidase as a catalyst and a reductant, and the resulting product has a high chiral purity.
    Type: Grant
    Filed: February 29, 2020
    Date of Patent: May 31, 2022
    Assignee: FUDAN UNIVERSITY
    Inventors: Fener Chen, Zedu Huang, Zhining Li, Jiaqi Wang
  • Patent number: 11345900
    Abstract: A monooxygenase having an amino acid sequence obtained by mutation of the amino acid sequence shown in SEQ ID NO:2 is disclosed. The use of the monooxygenase of the present invention in production of chiral sulfoxide-based drugs has advantages including mild reaction conditions, environmental friendliness, high yield, high optical purity of products, less peroxide products, and the like, and therefore the monooxygenase in the present invention has a good industrial application prospect in the production of proton pump inhibitors for the treatment of gastric ulcers.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 31, 2022
    Assignees: JIANGSU AOSAIKANG PHARMACEUTICAL CO., LTD., EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Yan Zhang, Huilei Yu, Shimiao Ren, Peng Zhao, Jianhe Xu, Yinqi Wu, Qian Zhao