Patents Examined by Robert B. Mondesi
  • Patent number: 11959092
    Abstract: The present invention discloses a process for engineering a host cell comprising the steps of; a) integrating a first polynucleotide cassette including a first selection marker flanked by a first pair of recombination sites; b) removing the first selection marker by the action of a recombinase which recognises the first pair of recombination sites; c) integrating a second polynucleotide cassette including a second selection marker flanked by a second pair of recombination sites; and d) removing the second selection marker by the action of a recombinase which recognises the second pair of recombination sites. Also disclosed is a host cell genome polynucleotide comprising a first recombinantly engineered region and a second recombinantly engineered region, wherein a first single recombination site is adjacent to the first recombinantly engineered region, and a second single recombination site is adjacent to the second recombinantly engineered region.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 16, 2024
    Assignee: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Amirreza Faridmoayer, Michael Thomas Kowarik, Gerd Martin Lipowsky, Fabio Serventi
  • Patent number: 11952575
    Abstract: A transaminase mutant and use hereof, the amino acid sequence of the transaminase mutant is an amino acid sequence in which the amino acid sequence as represented by SEQ ID NO: 1 is mutated, the mutated amino acid position being one or more selected from among F89, K193, P243, V234, I262, Q280, V379, R416, A417 and C418. The enzymatic activity and/or stability of the transaminase mutant is improved.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: April 9, 2024
    Assignee: ASYMCHEM LIFE SCIENCE (TIANJIN) CO., LTD
    Inventors: Hao Hong, Gage James, Jiangping Lu, Xingfu Xu, Wenyan Yu, Xin Huang, Yulei Ma, Yibing Cheng
  • Patent number: 11946086
    Abstract: This invention is intended to identify a gene cluster involved in biosynthesis of a cyclic peptide compound produced by a filamentous fungus of the Curvularia species and to establish a system for synthesizing such cyclic peptide compound. The gene is composed of a first module to a tenth module and encodes a protein having activity of synthesizing a nonribosomal peptide constituting a basic peptide backbone of a cyclic peptide compound produced by a filamentous fungus of the Curvularia species.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: April 2, 2024
    Assignees: TOHOKU UNIVERSITY, KUMIAI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Takashi Kubo, Masayuki Machida, Maiko Umemura, Keietsu Abe, Akira Yoshimi, Tomonori Fujioka, Shigenari Yamaguchi, Kiyoshi Kawai
  • Patent number: 11939599
    Abstract: Disclosed are a gene mining method combining functional sequence and structure simulation, an NADH-preferring phosphinothricin dehydrogenase mutant and an application thereof. The gene mining method comprises the following steps: (1) analyzing a characteristic sequence which an NADH-type glutamate dehydrogenase should have; (2) searching a gene library based on the characteristic sequence; (3) performing clustering analysis and protein structure simulation on genes obtained by the searching; (4) selecting genes that feature high gene aggregation and a protein structure similar to that of the known phosphinothricin dehydrogenase as candidate genes. A wild-type phosphinothricin dehydrogenase with an amino acid sequence as set forth in SEQ ID No.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: March 26, 2024
    Assignee: ZHEJIANG UNIVERSITY OF TECHNOLOGY
    Inventors: Yaping Xue, Feng Cheng, Jiamin Zhang, Shuping Zou, Jianmiao Xu, Yuguo Zheng
  • Patent number: 11932893
    Abstract: The invention provides non-naturally occurring microbial organisms containing an alkene pathway having at least one exogenous nucleic acid encoding an alkene pathway enzyme expressed in a sufficient amount to convert an alcohol to an alkene. The invention additionally provides methods of using such microbial organisms to produce an alkene, by culturing a non-naturally occurring microbial organism containing an alkene pathway as described herein under conditions and for a sufficient period of time to produce an alkene.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: March 19, 2024
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Robin E. Osterhout
  • Patent number: 11932881
    Abstract: A heparin skeleton synthase originates from Neisseria animaloris, with an amino acid sequence as shown in SEQ ID NO.2 and a nucleotide sequence of the coding gene as shown in SEQ ID NO.1. Its recombinant expression level is 6.8 times that of the existing heparin skeleton synthase KfiA from Escherichia coli K5, and total enzyme activity per fermentation liquor is 5.22 times that of the heparin skeleton synthase KfiA. The heparin skeleton synthase mutants obtained through site-directed mutagenesis of the sites No. 16, No. 25, No. 30, No. 111, No. 165, and No. 172 in the amino acid sequence of the said heparin skeleton synthase all have high expression levels.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: March 19, 2024
    Assignees: SHAN DONG UNIVERSITY, Bloomage Biotechnology Corporation Limited
    Inventors: Juzheng Sheng, Xueping Guo, Jianqun Deng, Fengshan Wang, Zhen Lu, Ranran Du, Liu Sun, Yuanjun Sun
  • Patent number: 11926850
    Abstract: The present invention relates to genetically modified yeasts that can use lactate as a carbon source to produce a fermentation product. In one aspect, the yeasts can consume glucose and lactate simultaneously to produce ethanol. In one aspect, the genetically modified yeast is transformed to include a monocarboxylic/monocarboxylate transporter. In one aspect, the yeast can include one or more heterologous genes encoding lactate dehydrogenase (cytochrome) (EC 1.1.2.3 and/or 1.1.2.4).
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: March 12, 2024
    Assignee: CARGILL, INCORPORATED
    Inventors: Arlene M. Fosmer, Christopher K. Miller, Gregory Michael Poynter, Brian Jeffrey Rush, Jon Veldhouse
  • Patent number: 11920167
    Abstract: The present invention provides engineered glycosyltransferase (GT) enzymes, polypeptides having GT activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. The present invention provides engineered sucrose synthase (SuS) enzymes, polypeptides having SuS activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. The present invention also provides compositions comprising the GT enzymes and methods of using the engineered GT enzymes to make products with ?-glucose linkages. The present invention further provides compositions and methods for the production of rebaudiosides (e.g., rebaudioside M, rebaudioside A, rebaudioside I, and rebaudioside D). The present invention also provides compositions comprising the SuS enzymes and methods of using them. Methods for producing GT and SuS enzymes are also provided.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: March 5, 2024
    Assignee: TATE & LYLE SOLUTIONS USA LLC
    Inventors: Jonathan Vroom, Stephanie Sue Galanie, Nikki Dellas, Jack Liang, Joyce Liu, David Entwistle, Courtney Dianne Moffett
  • Patent number: 11881606
    Abstract: “Biocathode MCL,” designated for its main bacterial constituents (Marinobacter, Chromatiaceae, and Labrenzia), is a stable microbial community enriched from seawater that forms biofilms on the surfaces of electrodes. These biofilms are effective to perform carbon fixation without the need for external electrical power nor sunlight applied thereto.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: January 23, 2024
    Assignee: The Government of the United States of America, as repersented by the Secretary of the Navy
    Inventors: Sarah M. Glaven, Lina Bird, Leonard M. Tender
  • Patent number: 11859189
    Abstract: The present disclosure provides host cells, e.g., bacterial cells, that comprise a methionine decarboxylase enzyme for the treatment of diseases and disorders associated with methionine metabolism in a subject. The disclosure further provides pharmaceutical compositions and methods of treating disorders associated with methionine metabolism, such as homocystinuria.
    Type: Grant
    Filed: August 11, 2022
    Date of Patent: January 2, 2024
    Assignees: Synlogic Operating Company, Inc., Ginkgo Bioworks, Inc.
    Inventors: Dylan Alexander Carlin, Vincent M. Isabella, Jonathan McMurry, Theodore Carlton Moore, III, Mylene Perreault, Nathan Schmidt, Mark Simon
  • Patent number: 11859225
    Abstract: A method of epimerizing an (S)-1-benzylisoquinoline alkaloid to an (R)-1-benzylisoquinoline alkaloid is provided. The method comprises contacting the (S)-1-benzylisoquinoline alkaloid with at least one enzyme. Contacting the (S)-1-benzylisoquinoline alkaloid with the at least one enzyme converts the (S)-1-benzylisoquinoline alkaloid to an (R)-1-benzylisoquinoline alkaloid.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: January 2, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christina D. Smolke, Stephanie Galanie, Isis Trenchard, Catherine Thodey, Yanran Li
  • Patent number: 11851686
    Abstract: Improved soluble methane monooxygenases and soluble methane monooxygenase systems are provided.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: December 26, 2023
    Assignee: Industrial Microbes, Inc.
    Inventors: Elizabeth Jane Clarke, Derek Lorin Greenfield, Noah Charles Helman, Stephanie Rhianon Jones, Baolong Zhu
  • Patent number: 11802299
    Abstract: An enzyme-catalyzed method of synthesizing (2S,3R)-2-substituted aminomethyl-3-hydroxybutyrate, including: preparing engineered bacteria containing a carbonyl reductase SsCR-encoding gene; preparing a resting cell suspension of the engineered bacteria; preparing a culture containing carbonyl reductase; and mixing the culture containing carbonyl reductase with substrate 2-substituted aminomethyl-3-one butyrate, glucose dehydrogenase, a cosolvent, glucose and a cofactor followed by asymmetric carbonyl reduction to obtain (2S,3R)-2-substituted aminomethyl-3-hydroxybutyrate. The amino acid sequence of the carbonyl reductase is shown in SEQ ID NO.1.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: October 31, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Yuan Tao, Zedu Huang, Dang Cheng, Ge Meng
  • Patent number: 11795486
    Abstract: The present invention relates to an enzyme-catalyzed process for producing GDP-fucose from low-cost substrates guanosine and L-fucose or guanosine and D-Mannose in a single reaction mixture. Said process can be operated (semi)continuously or in batch mode. Further, said process can be adapted to produce fucosylated molecules and biomolecules including glycans, such as human milk oligosaccharides, proteins, peptides, glycoproteins or glycopeptides.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 24, 2023
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Reza Mahour, Thomas F. T. Rexer
  • Patent number: 11780905
    Abstract: The disclosure provides an active peptide with an anti-lipid oxidation function and a preparation method and application thereof and belongs to the technical field of plant-derived biologically active peptides. In the disclosure, oil processing by-products, namely oil crops after oil extraction, are used as the raw materials, and the raw materials are subjected to the steps of protein extraction, infrared pretreatment, proteolysis, freeze-drying, lipophilic part extraction, vacuum concentration and drying to prepare an anti-lipid oxidation peptide having the functional characteristics of scavenging DPPH free radicals, chelating metal ions, inhibiting lipid peroxidation, prolonging vegetable oil oxidation induction time, improving emulsion stability and the like.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: October 10, 2023
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Fei Xu, Jinyuan Hu
  • Patent number: 11773424
    Abstract: A recombinant host cell comprising an endogenous gene encoding a FLO8 protein comprising the amino acid sequence identified as SEQ ID NO:1 or a homologue thereof, which host cell is engineered by one or more genetic modifications to reduce expression of said gene compared to the host cell prior to said one or more genetic modifications, and which host cell comprises a heterologous expression cassette comprising a gene of interest (GO!) under the control of an expression cassette promoter (ECP) which ECP is repressible by a non-methanol carbon source, and a method of producing a protein of interest using said recombinant host cell.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: October 3, 2023
    Assignee: LONZA LTD
    Inventors: Brigitte Gasser, Corinna Rebnegger, Mirelle Citiali Flores Villegas, Diethard Mattanovich
  • Patent number: 11753659
    Abstract: Cell that is genetically modified comprising: a) one or more nucleotide sequence encoding a NAD+-dependent acetylating acetaldehyde dehydrogenase (E.C. 1.2.1.10); b) one or more nucleotide sequence encoding a acetyl-CoA synthetase (E.C. 6.2.1.1); c) one or more nucleotide sequence encoding a glycerol dehydrogenase (E.C. 1.1.1.6); and d) one or more nucleotide sequence encoding a dihydroxyacetone kinase (E.C. 2.7.1.28 or E.C. 2.7.1.29).
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: September 12, 2023
    Assignee: DSM IP ASSETS B.V.
    Inventors: Paul Klaassen, Wouter Willem Antonius Hartman
  • Patent number: 11713454
    Abstract: The present invention provides a mutated histidine decarboxylase suitable for a practical use. Specifically, the present invention provides a mutated histidine decarboxylase having at least one amino acid residue mutated as compared to a wild-type histidine decarboxylase, and having higher histidine decarboxylase activity and/or stability than the wild-type histidine decarboxylase, and also a use thereof. The mutated histidine decarboxylase has Motifs (1) to (6), and an amino acid residue in at least one motif thereof can be mutated. The mutated histidine decarboxylase can also have a mutation of at least one amino acid residue in an amino acid sequence designated by SEQ ID NO: 3 and in a homologous sequence thereto.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: August 1, 2023
    Assignee: AJINOMOTO CO., INC.
    Inventors: Hiroki Yamaguchi, Masayuki Sugiki, Kunio Nakata
  • Patent number: 11713451
    Abstract: The present disclosure relates to engineered ketoreductase polypeptides for the preparation of hydroxyl substituted carbamate compounds, and polynucleotides, vectors, host cells, and methods of making and using the ketoreductase polypeptides.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: August 1, 2023
    Assignee: Codexis, Inc.
    Inventors: Fabien Louis Cabirol, Haibin Chen, Anupam Gohel, Steven J. Collier, Derek J. Smith, Birgit Kosjek, Jacob Janey
  • Patent number: 11708389
    Abstract: Disclosed here are compositions of matter that comprise DNA analogues that have been rectified by replacing the four standard components with alternative components that mitigate various problems frequently encountered during synthesis of these compounds, during the functioning of these compounds, and complex mixtures for information data storage.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: July 25, 2023
    Inventor: Steven Benner