Abstract: Downhole stimulation tools include a housing and at least one propellant structure within the housing comprising at least one propellant grain of a formulation, at least another propellant grain of a formulation different from the formulation of the at least one propellant grain longitudinally adjacent the at least one propellant grain, and at least one initiation element proximate at least one of the propellant grains. At least one pressure containment structure is secured to the housing and comprises a seal element expandable in response to gas pressure generated by combustion of a propellant grain of the at least one propellant structure. Related methods are also disclosed.
Abstract: A well pump assembly has a submersible well fluid pump, motor, and seal section with a seal section shaft for transferring rotation of a motor drive shaft to a pump drive shaft. The seal section has a shaft passage through which the seal section shaft extends. A movable compensating element has an interior containing motor lubricant that is in fluid communication with motor lubricant in the motor and also in fluid communication with motor lubricant in the shaft passage. A shaft seal restricts well fluid from entry into the shaft passage. A lubricant pump driven by the shaft has a discharge within the shaft passage below the shaft seal. A recirculation passage extends from the shaft passage at a point between the discharge of the lubricant pump and the shaft seal to the interior of the compensating element.
Abstract: A component for a downhole tool includes a rotor and a hardfacing precursor. The hardfacing precursor includes a polymeric material, hard particles, and a metal. A hydraulic drilling motor includes a stator, a rotor, and a sintered hardfacing material on an outer surface of the rotor or an inner surface of the stator. Methods of applying hardfacing to surfaces include forming a paste of hard particles, metal matrix particles, a polymeric material, and a solvent. The solvent is removed from the paste to form a sheet, which is applied to a surface and heated. A component for a downhole tool includes a first hardfacing material, a second hardfacing material over the first hardfacing material and defining a plurality of pores, and a metal disposed within at least some of the pores. The metal has a melting point lower than a melting point of the second hardfacing material.
Type:
Grant
Filed:
May 28, 2015
Date of Patent:
September 18, 2018
Assignee:
Baker Hughes Incorporated
Inventors:
Travis E. Puzz, James L. Overstreet, Jimmy W. Eason
Abstract: Auxiliary conduits that run through a packer body or seal are equipped with thermally responsive valve members that with a time exposure close off the conduits to create zonal isolation across one or more packers after a gravel pack. The heat source can also be added to the well fluids to control the speed of the process either in the form of heaters or reactive chemicals that create an exothermic reaction. The valve material can be shape memory polymer.
Type:
Grant
Filed:
March 18, 2014
Date of Patent:
August 28, 2018
Assignee:
Baker Hughes, a GE company, LLC
Inventors:
Andres Garcia, Nervy E. Faria, Britain Fisher
Abstract: A connection assembly for automated lifting and positioning of a chiksan or other fluid conduit in proximity to a fluid inlet of a device such as, for example, a cement or hydraulic fracturing head. Once a chiksan or other flow line is positioned in a desired location, a secure connection is made between the outlet of the chiksan or other fluid conduit and the fluid inlet including, without limitation, when the device is positioned at an elevated location above a rig floor.
Type:
Grant
Filed:
June 23, 2017
Date of Patent:
August 7, 2018
Assignee:
Blackhawk Specialty Tools, LLC
Inventors:
Ron D. Robichaux, James G. Martens, John E. Hebert, Juan Carlos E. Mondelli, James Champagne, Joseph Boudreaux, Scottie J. Scott, Jeremy LeCompte
Abstract: A housing contains an internal volume. A heat-sensitive device is contained by the housing and consumes a device percentage of the internal volume. The device percentage equals the percentage of the internal volume of the housing consumed by the heat-sensitive device. A phase-change material is positioned within the housing to conduct heat from the heat-sensitive device. The phase-change material consumes a percentage of the internal volume equal to 100 percent minus the device percentage minus an expansion percentage. The phase-change material expands in volume by an amount more than 75 percent of the expansion percentage upon occurrence of a phase-change event.
Type:
Grant
Filed:
December 27, 2013
Date of Patent:
July 17, 2018
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Clovis S. Bonavides, William George Dillon