Patents Examined by Robert S Carrico
  • Patent number: 10458029
    Abstract: A bacterial fuel cell including a plurality of anodes and a plurality of cathodes in liquid communication with a liquid to be purified, the plurality of anodes and the plurality of cathodes each including a metal electrical conductor arranged to be electrically coupled across a load in an electrical circuit and an electrically conductive coating at least between the metal electrical conductor and the liquid to be purified, the electrically conductive coating being operative to mutually seal the liquid and the electrical conductor from each other.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: October 29, 2019
    Assignee: EMEFCY LIMITED
    Inventors: Ronen Itzhak Shechter, Eytan Baruch Levy, Lior Eshed
  • Patent number: 10461312
    Abstract: The present invention provides a cathode active material for a nonaqueous electrolyte secondary battery with a high capacity, high stability and excellent output characteristics and a method for producing the same, and a nonaqueous electrolyte secondary battery using the cathode active material. The cathode active material for a nonaqueous electrolyte secondary battery is represented by a general formula: LitNi1-x-y-zCoxAlyTizO2 wherein 0.98?t?1.10, 0<x?0.30, 0.03?y?0.15, 0.001?z?0.03; and includes a hexagonal lithium-containing composite oxide with a layer structure of secondary particles having primary particles, in which a titanium-enriched layer is formed on a surface of the primary particles and/or a grain boundary between the primary particles. The titanium-enriched layer on the surface of the primary particles and/or a grain boundary between the primary particles serves as a lithium ion conductor, yielding smooth extraction and insertion of lithium ions.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: October 29, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Shin Imaizumi, Rei Kokado, Kensaku Mori
  • Patent number: 10454126
    Abstract: A clamp assembly for securing a fuel cell stack arrangement in a compressed condition. The stack includes an electrode assembly interposed between upper and lower current collectors, supportable between upper and lower endpiate structures. It comprises at least one rigid clamping device comprising spaced apart transversely disposed elongate clamp members for engaging outer surfaces of the upper and lower endplates respectively along peripheral edges, the clamp members being interposed by vertically disposed support members having a length greater than the height of the stack in a compressed condition thereof. The endpiate structures define docking formations along peripheral edges for engaging the damp members under compression of the stack. The docking formations define spaces between the endpiate structures and the compressing means within which the clamp members are receivable during compression.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: October 22, 2019
    Assignee: UNIVERSITY OF CAPE TOWN
    Inventor: Shiro Tanaka
  • Patent number: 10446824
    Abstract: A nonaqueous electrolyte secondary battery in accordance with the present invention is provided with an electrode body 20 including a positive electrode 30 and a negative electrode 50, and a nonaqueous electrode. The electrode body 20 is constituted by a plurality of different constituent members. At least two constituent members among the plurality of constituent members constituting the electrode body 20 include respective particulate polymers 38, 28 having a melting point within a temperature range from 80° C. to 120° C., with these two members being different from each other. The electrode body 20 is provided with the positive electrode 30 including a positive electrode active material layer 34 on a positive electrode collector 32, the negative electrode 50 including a negative electrode active material layer 54 on a negative electrode collector 52, separators 70A, 70B interposed between the positive electrode 30 and the negative electrode 50, and nonaqueous electrolyte.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: October 15, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Morita, Yusuke Fukumoto
  • Patent number: 10446872
    Abstract: A solid electrolyte material represented by Formula 1: L1+2x(M1)1?x(M2)(M3)4??Formula 1 wherein 0.25<x<1, L is at least one element selected from a Group 1 element, M1 is at least one element selected from a Group 2 element, a Group 3 element, a Group 12 element, and a Group 13 element, M2 is at least one element selected from a Group 5 element, a Group 14 element, and a Group 15 element, and M3 is at least one element selected from a Group 16 element, and wherein the solid electrolyte material has an I-4 crystal structure.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: October 15, 2019
    Assignees: SAMSUNG ELECTRONICS CO., LTD., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Gerbrand Ceder, Jaechul Kim, Lincoln Miara, William Richards, Tomoyuki Tsujimura, Yan Wang, Naoki Suzuki
  • Patent number: 10411263
    Abstract: An electrode for a secondary battery includes a current collector, and an active material layer being formed on a surface of the current collector, and containing an active material and a binder, in which the active material contains SiOx, a surface of SiOx is modified with one or more groups selected from the group consisting of an aniline group, an imidazole group, and an amino group, and the binder is constituted by a water-soluble polymer having a sugar chain structure that contains a carboxylic acid group.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: September 10, 2019
    Assignee: TOPPAN PRINTING CO., LTD.
    Inventor: Hitoshi Kurihara
  • Patent number: 10355308
    Abstract: The present invention aims to provide a sulfide solid electrolyte material with favorable ion conductivity, in which charge and discharge efficiency may be inhibited from decreasing. The object is attained by providing a sulfide solid electrolyte material, including: a Li element; a P element; and a S element, characterized in that the material has a peak at a position of 2?=30.21°±0.50° in X-ray diffraction measurement using a CuK? ray, and the sulfide solid electrolyte material does not substantially include a metallic element belonging to the third group to the sixteenth group.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: July 16, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Masaaki Hirayama, Yuki Kato, Takamasa Ohtomo, Hisatsugu Yamasaki
  • Patent number: 10355304
    Abstract: A battery pack includes a battery housing and electrochemical cells disposed in the battery housing in a stacked configuration. Elastic members are disposed between adjacent cells of a cell stack. Each elastic members is formed as a plate (e.g., a single-thickness sheet) having a curved or wavy contour when seen in cross-section, and is configured to serve as a compression spring that provides a predetermined compression force to adjacent cells while accommodating cell growth during use. The elastic members may include surface features such as strategically shaped and/or located protrusions that are configured to permit compliance and can be tuned to address the requirements of a specific application and permit application of varying stiffness characteristics across a surface of a cell.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: July 16, 2019
    Assignees: Robert Bosch Battery Systems GmbH, Robert Bosch GmbH
    Inventors: Nick Karditsas, Mark Kotik
  • Patent number: 10347885
    Abstract: A battery module includes a plurality of battery cells arranged in one direction, spacers respectively located among the plurality of battery cells, the spacers including upper end portions and upper flange portions along the upper end portions, a housing accommodating the plurality of battery cells and the spacers, a pair of end plates at respective opposite ends in the arrangement direction of the plurality of battery cells, the pair of end plates being outside of the housing, and a top plate over the plurality of battery cells, the top plate including a lower surface and at least one holding member on the lower surface, the at least one holding member on the lower surface corresponding to at least one holding groove portion in the upper flange portions of the spacers.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: July 9, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Sung Jin Yoon
  • Patent number: 10340548
    Abstract: Process for the fabrication of a solid electrolyte thin film for an all-solid state Li-ion battery comprising steps to: a) Procure a possibly conducting substrate film, possibly coated with an anode or cathode film, b) Deposit an electrolyte thin film by electrophoresis, from a suspension of particles of electrolyte material, on said substrate and/or said previously formed anode or cathode film, c) Dry the film thus obtained, d) Consolidate the electrolyte thin film obtained in the previous step by mechanical compression and/or heat treatment.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 2, 2019
    Assignee: I-TEN
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Patent number: 10333156
    Abstract: A method for creating a formed-in-place seal on a fuel cell plate is disclosed. The method includes first dispensing a flowable seal material along a first sealing area of a fuel cell plate requiring the seal material. Next, a preformed template is located adjacent to at least a portion of the fuel cell plate, the template including predetermined apertures corresponding with a second sealing area of the plate, such that the apertures are coextensive with at least a portion of the first sealing area. Flowable seal material is applied into the apertures, and is then cured to a non-flowable state.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: June 25, 2019
    Assignee: GM Global Technology Operations LLC
    Inventor: Mark W. Keyser
  • Patent number: 10333170
    Abstract: An object of the present invention is to provide a sulfide solid electrolyte material with favorable ion conductivity. In the present invention, the above object is achieved by providing a sulfide solid electrolyte material comprising a composition of LixSiyPzS1-x-y-z-wXw (0.37?x?0.40, 0.054?y?0.078, 0.05?z?0.07, 0?w?0.05, and X is at least one of F, Cl, Br, and I), characterized in that the sulfide solid electrolyte material has a crystal phase A having a peak at a position of 2?=29.58°±1.00° in X-ray diffraction measurement using a CuK? ray, the sulfide solid electrolyte material does not have a crystal phase B having a peak at a position of 2?=30.12°±1.00° in X-ray diffraction measurement using a CuK? ray, or slightly has the crystal phase B.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: June 25, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yuki Kato
  • Patent number: 10297853
    Abstract: A solid oxide fuel cell with a dense barrier layer formed at or near the outer surface of the top and/or bottom electrode layers in a fuel cell stack. The dense barrier layer (DBL) acts as a seal to prevent gas in the electrode layer (either air in a cathode layer or fuel gas in an anode layer) from leaking out of the stack though the outer surface of the outermost electrode layers. The use of a DBL with porous outer electrode layers reduces the amount of gas escaping the stack and minimizes the chances for leak-induced problems ranging from decreases in performance to catastrophic stack failure.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: May 21, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Brian P. Feldman, Craig M. Adams, Zachary R. Patterson, Ayhan Sarikaya, Aravind Mohanram
  • Patent number: 10297835
    Abstract: A glucose fuel cell for reception into a given constrained volume of implantation in a vertebrate in which the glucose fuel cell has access to fluid containing glucose. The fuel cell includes an anode adapted to oxidize the glucose, a cathode adapted to reduce an oxidant, and a membrane disposed between the anode and the cathode and separating the anode from the cathode. At least one of the anode or cathode define a flexible sheet that is geometrically deformed to be receivable into the given constrained volume of implantation and increase volumetric power density. Related methods of making a glucose fuel cell of this type and implantable assemblies including the glucose fuel cell are also disclosed.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: May 21, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Rahul Sarpeshkar, Jeremy Bert Muldavin, Todd Addison Thorsen, Jakub Kedzierski, Benjamin Isaac Rapoport, Michale Sean Fee
  • Patent number: 10297882
    Abstract: A battery system includes a plurality of battery cells and a temperature-control element that is thermally conductively connected to the battery cells via a temperature-control surface. The temperature-control element has a temperature-control channel in an interior of the temperature-control element. The temperature-control channel is routed on the forward flow side via an inlet and on the return flow side via an outlet from the temperature-control element. A bypass is connected to the temperature-control channel via a dividing node and a merging node with the dividing node being arranged closer to the inlet than the merging node. A motor vehicle includes the battery system.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: May 21, 2019
    Assignees: Robert Bosch GmbH, Samsung SDI Co., Ltd.
    Inventors: Xiaofeng Yan, Christian Pankiewitz, Sylvain Guenon, Christian Loew, Achim Schmidt
  • Patent number: 10224125
    Abstract: The present invention is directed to compositions comprising at least one layer or at least two layers, each layer comprising a substantially two-dimensional array of crystal cells, having first and second surfaces, each crystal cell having the empirical formula of Mn+1Xn, where M, X, and n are described in the specification, and devices incorporating these compositions.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: March 5, 2019
    Assignee: Drexel University
    Inventors: Michel W. Barsoum, Yury Gogotsi, Michael Naguib Abdelmalak, Olha Mashtalir
  • Patent number: 10218042
    Abstract: A system having an electrochemical storage device is provided including an anode chamber filled with anode material and cathode chamber filled with cathode material. The anode chamber is separated from the cathode chamber by ion-conducting solid body electrolytes. The anode chamber is defined on one side by the solid body electrolytes, and on the other side by a wall surrounding the solid body electrolytes. The device has a head part to receive and/or supply electric energy, base part arranged opposite the head part and at least one lateral part having at least one wall between the head and base part. At least one heat dissipating device receives heat from the electrochemical storage device via a first surface and/or to supply heat thereto and to supply and/or receive heat via a second surface. A receiving section is in thermal contact with the heat dissipating device.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 26, 2019
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Michael Kuhne
  • Patent number: 10211451
    Abstract: The present invention relates to a negative electrode for a lithium ion secondary battery, the negative electrode containing a negative electrode active material containing a first carbon and a second carbon, in which the first carbon is spherical graphite, the second carbon is massive graphite, and the sulfur concentration in the first carbon (Sx) and the sulfur concentration in the second carbon (Sy) are each independently 0 ppm or more and 300 ppm or less.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: February 19, 2019
    Assignee: NEC CORPORATION
    Inventors: Takeshi Azami, Hitoshi Ishikawa
  • Patent number: 10158110
    Abstract: In an aspect, the invention provides separator systems for electrochemical systems providing electronic, mechanical and chemical properties useful for a range of electrochemical storage and conversion applications. Separator systems of some embodiments, for example, provide structural, physical and electrostatic attributes useful for managing and controlling dendrite formation in lithium and zinc based batteries. In an embodiment, for example, separator systems of the invention have a multilayer, porous geometry supporting excellent ion transport properties while at the same time providing a barrier effective to prevent dendrite initiated mechanical failure, shorting and/or thermal runaway.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: December 18, 2018
    Assignee: California Institute of Technology
    Inventor: Farshid Roumi
  • Patent number: 10147978
    Abstract: Process for the purification of an ionic electrolyte comprising at least one alkali metal salt, the process having at least one stage in which particles of at least one calcium salt are brought into contact. The process makes it possible to obtain electrolytes characterized in particular by a particularly low water content. The corresponding electrochemical generators which incorporate the electrolyte as constituent component are characterized by a noteworthy stability and are particularly safe.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: December 4, 2018
    Assignee: HYDRO-QUEBEC
    Inventors: Karim Zaghib, Jocelyn Jalbert, Abdelbast Guerfi, Christophe Michot, Michel Gauthier, Martin Dontigny, Patrick Charest