Patents Examined by Robert Spitzer
  • Patent number: 5858067
    Abstract: An apparatus for manufacturing a sorbent-containing fluid storage and dispensing vessel. A fluidizing vessel is arranged to hold a fluidized bed of solid-phase physical sorbent material, and sorbent material is fed to the fluidizing vessel. The sorbent material is fluidized with sorbable gas, to load the sorbent material with the gas and yield sorbate gas-loaded sorbent material. The sorbate gas-loaded sorbent material is transported from the fluidized bed into a storage and dispensing vessel, for subsequent use of the storage and dispensing vessel to selectively dispense the gas. Heat of adsorption effects are substantially eliminated in the fluidized bed, permitting the storage and dispensing vessel to be loaded at substantially ambient temperature.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: January 12, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventor: James V. McManus
  • Patent number: 5858066
    Abstract: An improved process is disclosed for separating and recovering a fluorocarbon and hydrogen chloride (HCl) from a gaseous fluorocarbon/HCl mixture, wherein the fluorocarbon and HCl are difficult to separate by conventional means because of the presence or potential formation of an azeotrope or azeotrope-like composition in the mixture, such process comprising using a semi-permeable membrane unit to form a fluorocarbon-depleted stream and a fluorocarbon-enriched stream which may then be further processed individually by distillation.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: January 12, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: William G. O'Brien, Barry A. Mahler
  • Patent number: 5858063
    Abstract: A method of controlling an oxygen concentrator having a first sieve bed operated over successive control periods according to a duty cycle for alternately pressurizing and flushing the first sieve bed and a second sieve bed operated over the successive control periods according to a reciprocal of the duty cycle is disclosed. The duty cycle and the reciprocal duty cycle are adjusted during every second one of the successive control periods to change the pressurizing relative to the flushing of the first sieve bed and to change the flushing relative to the pressurizing of the second sieve bed, for reducing concentration of oxygen produced. The duty cycle and the reciprocal duty cycle are adjusted during remaining control periods to change the flushing relative to the pressurizing of the first sieve bed and to change the pressurizing relative to the flushing of the second sieve bed, such that water vapor is purged from the first and second sieve beds after pressurizing thereof.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: January 12, 1999
    Assignee: Litton Systems, Inc.
    Inventors: Tuan Quoc Cao, Russell Frank Hart, William David Molis, Richard Kent Frantz, Charles Bradley Hager, Victor Paul Crome
  • Patent number: 5858065
    Abstract: Processes and systems to recover at least one perfluorocompound gas from a gas mixture are provided. In one embodiment the inventive process comprises providing a gas mixture comprising at least one perfluorocompound gas and at least one carrier gas, the gas mixture being at a predetermined pressure; providing at least one size selective membrane having a feed side and a permeate side; contacting the feed side of the at least one membrane with the gas mixture; withdrawing from the feed side of the membrane as a non-permeate stream at a pressure which is substantially equal to the predetermined pressure a concentrated gas mixture comprising essentially the at least one perfluorocompound gas; and withdrawing from the permeate side of the membrane as a permeate stream a depleted gas mixture comprising essentially the at least one carrier gas.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: January 12, 1999
    Assignee: American Air Liquide
    Inventors: Yao-En Li, Joseph E. Paganessi, David Vassallo, Gregory K. Fleming
  • Patent number: 5858064
    Abstract: A system for generating oxygen enriched air includes a compressed air supply for supplying compressed air and a permeable membrane gas separation system for separating a nitrogen gas component and an oxygen enriched air component from the compressed air. An oxygen analyzer is provided to detect an oxygen concentration in the oxygen enriched air component. The nitrogen gas component is divided, by a vortex tube, into a cold gas stream and a hot gas stream, and solenoid valves are actuated to modify a flow path of the compressed air through the cold gas stream and the hot gas stream in order to selectively heat and cool the compressed air. The oxygen enriched air is then selectively distributed for further use.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: January 12, 1999
    Assignee: Undersea Breathing Systems, Inc.
    Inventor: William H. Delp, II
  • Patent number: 5858062
    Abstract: An apparatus for providing oxygen-enriched air at a first pressure and at a second pressure, the second pressure being greater than the first pressure. The apparatus comprises, in combination, a pressure swing adsorption system and a pressure intensifier. The pressure swing adsorption system for enriching the oxygen content of air has a pressure of at least the first pressure. The pressure swing adsorption system is adapted to provide oxygen-enriched air to a first outlet at the first pressure and to provide oxygen-enriched air to a pressure intensifier at the first pressure. The pressure intensifier pressurizes the oxygen-enriched air and provides the oxygen-enriched air to a second outlet at the second pressure.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: January 12, 1999
    Assignee: Litton Systems, Inc.
    Inventors: Kevin Gene McCulloh, Dale Louis Selhost, John W. Henneman, Kelly M. Coffield
  • Patent number: 5858068
    Abstract: Industrial grade carbon dioxide may contain unacceptable amounts of sulfur-containing materials, oxygen, and organic materials particularly detrimental to food-related uses of CO.sub.2. These can be effectively removed by a bed of silver-exchanged faujasite and an MFI-type molecular sieve. This permits an on-site, on-demand method of purifying CO.sub.2 ranging from laboratory to tank car seals.
    Type: Grant
    Filed: October 9, 1997
    Date of Patent: January 12, 1999
    Assignee: UOP LLC
    Inventors: James R. Lansbarkis, Jon S. Gingrich
  • Patent number: 5855650
    Abstract: In the purification of air to remove water and carbon dioxide and other contaminants prior to cryogenic separation of oxygen and nitrogen, water and carbon dioxide are adsorbed on a solid adsorbent and are periodically desorbed to regenerate the adsorbent by the passing of a heated regenerating gas such that the quantity of heat added to the regenerating gas to produce desorption is no more than 90 percent of the heat of adsorption liberated during the adsorption of the water and carbon dioxide. The process is applicable to removing other contaminants from other gas streams also.
    Type: Grant
    Filed: September 9, 1997
    Date of Patent: January 5, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mohammad Ali Kalbassi, Timothy Christopher Golden
  • Patent number: 5855646
    Abstract: A method and device indirectly monitors the purity of nitrogen gas manufactured from air using a permeable membrane to separate air components. A gas flow measuring device inserted in gas conduits downstream from the membrane monitors nitrogen gas purity by measuring normal flow and detects deviation from desired purity levels by changing gas flow caused by manufacturing apparatus malfunctions.
    Type: Grant
    Filed: May 22, 1997
    Date of Patent: January 5, 1999
    Inventor: Nicholas A. Verini
  • Patent number: 5855647
    Abstract: A process for recovering SF.sub.6 from a gas is provided. The process includes the step of contacting a gas stream comprising SF.sub.6 and at least one of N.sub.2, O.sub.2, CO.sub.2, and H.sub.2 O with a membrane in at least one membrane separation unit at conditions effective to obtain a retentate stream rich in SF.sub.6 and a permeate stream rich in at least one of N.sub.2, O.sub.2, CO.sub.2, and H.sub.2 O.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: January 5, 1999
    Assignee: American Air Liquide, Inc.
    Inventors: Yao-En Li, Magdy Meimari
  • Patent number: 5851268
    Abstract: According to the present invention, there is provided a canister comprising: a casing having an interior therein and a separator for separating the interior into first and second interior sections, the first interior section containing an absorbent and having a fuel vapor inlet and a fuel vapor outlet, the second interior section containing an absorbent and having an opening which is open to the outside air, the separator having fuel vapor channels therein and being formed by compressing a flexible filtering material to elongate the channels.
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: December 22, 1998
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihiko Hyodo, Takaaki Itoh
  • Patent number: 5851267
    Abstract: A separation module uses a series of separation elements with interconnecting hardware that greatly reduces the time necessary for assembly of interconnected elements and the machining or preparation of an extended part of the module inside diameter for acceptance of the elements. The elements use an interconnection between the modules that provides a sliding seal for first engaging adjacent modules and allowing alignment while a secondary seal is brought into contact and locked to provide a rigid axial attachment between the separation elements. The module arrangement further uses a single outer seal near the end of the module into which the separation elements are inserted to reduce the amount of machining, honing, or sleeving necessary to seal the module against by-passing of feed or impermeable components.
    Type: Grant
    Filed: January 28, 1997
    Date of Patent: December 22, 1998
    Assignee: UOP LLC
    Inventor: A. William Schwartz
  • Patent number: 5851249
    Abstract: A particulate trap for a diesel engine in which at least two nonwoven sheets made of heat-durable metallic fibers and at least two corrugated plates made of heat-durable metal having a width smaller than that of the nonwoven sheets are alternately overlaid in the thicknesswise direction with each other in a spiral manner, and one surface of one of the nonwoven sheets and one surface of the other of the nonwoven sheets are in close contact and are continuously welded to each other along the upstream edges thereof as seen from the flowing direction of the exhaust gas so that a first space closed along the upstream edges and opened along the downstream edges is formed between the nonwoven sheets via one of the corrugated plates, and the other surface of the one nonwoven sheet and the other surface of the other nonwoven sheet are in close contact and are continuously welded to each other along the down stream edges thereof as seen from the flowing direction of the exhaust gas so that a second space closed along t
    Type: Grant
    Filed: July 23, 1997
    Date of Patent: December 22, 1998
    Assignees: Toyota Jidosha Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
    Inventors: Yoshimitu Henda, Kiyoshi Kobashi, Yoshimasa Watanabe, Yasushi Araki, Youichi Nagai, Syunsuke Ban
  • Patent number: 5851266
    Abstract: A process for removing oxygen from a feed gas stream to produce an oxygen-depleted retentate gas stream by supplying the feed gas stream to a bulk oxygen separation system for removing oxygen to produce an oxygen-depleted crude product gas stream and a first oxygen-containing permeate effluent stream, and supplying the oxygen-depleted crude product gas stream to a separator having a primary ion transport membrane to produce a second permeate effluent stream and the oxygen-depleted retentate gas stream. A reactive purge gas is added to react with a portion of the oxygen permeating through the primary ion transport membrane and purge the permeate side of the primary ion transport membrane, and/or a recycle gas stream comprising at least a portion of one gas stream produced during the process is added to at least one other of the gas streams.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: December 22, 1998
    Assignee: Praxair Technology,Inc.
    Inventors: Ravi Prasad, Christian Friedrich Gottzmann
  • Patent number: 5851270
    Abstract: A gas storage and dispensing system in which a gas is sorptively retained on a bed of physical adsorbent material in a containment vessel, and gas is desorbed for selective dispensing thereof from the vessel. The vessel is equipped for gas discharge, with a valve head, mass flow controller, regulator assembly, or the like. A gas-flow resistance-reducing structure such as a gas-permeable porous tube, inert packing, or dispersed inert material, is provided within the vessel, to reduce the resistance to flow of desorbed gas from the bed of adsorbent material during the dispensing operation.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: December 22, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventor: W. Karl Olander
  • Patent number: 5846291
    Abstract: A system for generating oxygen enriched air includes a compressed air supply for supplying compressed air and a permeable membrane gas separation system for separating a nitrogen gas component and an oxygen enriched air component from the compressed air. An oxygen analyzer is provided to detect an oxygen concentration in the oxygen enriched air component. The nitrogen gas component is divided, by a vortex tube, into a cold gas stream and a hot gas stream, and solenoid valves are actuated to modify a flow path of the compressed air through the cold gas stream and the hot gas stream in order to selectively heat and cool the compressed air. The oxygen enriched air is then selectively distributed for further use.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: December 8, 1998
    Assignee: Undersea Breathing Systems, Inc.
    Inventor: William H. Delp, II
  • Patent number: 5846292
    Abstract: A gas chromatograph and method of chromatography are provided. Analytes, those compounds to be tested, are extracted from the sample by moving the sample into a column which has a stationary phase along the column walls. The column has two sections which are different in length. The longer section is heated and the analytes move to the shorter section. The longer section is then cooled and the entire column is heated. The device then functions as an analytical column and the analytes move out of the shorter section, through the longer section, and out of the column. A detector placed at the end of the column's longer section detects the presence of the compounds as they exit the column. In an alternate embodiment two separate columns are provided. One column is used as the extraction column and the other is used as the analytical column.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: December 8, 1998
    Assignee: Board of Supervisors at Louisiana State University & Agricultural & Mechanical College
    Inventor: Edward B. Overton
  • Patent number: 5846296
    Abstract: In a method for recovering and/or purifying water which is absorbed from a humid atmosphere, the moisture from the air is adsorbed on a suitable medium (3) in a defined space, whereupon by the application of heat the moisture is brought to a condenser (1) where it passes into a liquid state (10) and is collected in a suitable manner. In order to improve the efficiency of this method the defined, sealed space is opened for the adsorbing medium (3), for free access to air at night-time and is closed during the hot day-time period. Condensed water is passed out through a collecting funnel (2) and a channel (5) to a collection container (6). A device is also described in the form of a housing with walls (7) which can be opened and closed, in which there is located an adsorbing medium (3). In the upper part of the housing there is provided a condenser (1). The condenser (1) is equipped with a drop collector (2) which is connected to an outlet pipe (5) to a collection container (6).
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: December 8, 1998
    Inventor: Per K.ang.re Krumsvik
  • Patent number: 5846295
    Abstract: Temperature swing adsorption to remove CO.sub.2 from a gas stream is conducted using alumina to adsorb all the water and at least most of the carbon dioxide from the gas stream. Optionally a downstream zone of zeolite may be provided to remove further carbon dioxide and hydrocarbons.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: December 8, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mohammed Ali Kalbassi, Rodney John Allam, Timothy Christopher Golden
  • Patent number: 5846294
    Abstract: A process and apparatus for separating the components of a gas mixture in a pair of adsorption vessels using a single gas compressor/pump to move gas into and out of the adsorption vessels. The cycle is such that the gas compressor/pump is in continuous operation. The adsorption cycle is non-symmetrical in that the series of steps carried out in one of the adsorbers is not the same as the series of steps carried out in the other adsorber. The apparatus includes an intermediate gas storage container which is used to temporarily store gas removed from the nonadsorbed gas outlet end of the adsorption vessels so that it can be used to partially pressurize the adsorption vessels upon completion of the adsorbent regeneration step of the adsorption cycle.
    Type: Grant
    Filed: April 23, 1997
    Date of Patent: December 8, 1998
    Assignee: The BOC Group, Inc.
    Inventor: Shain-Jer Doong