Patents Examined by Robert T Nguyen
  • Patent number: 11813757
    Abstract: A method for finding a center of a process kit and/or a process kit ring is provided. An object placed on an end effector is moved past a sensor of a manufacturing system. A first signal indicating a current shape of object is received from the sensor of the manufacturing system. A determination is made whether the first signal corresponds to a second signal indicating a predefined shape for a process kit and/or a process kit carrier. In response to a determination that the first signal corresponds to the second signal, a coordinate correspondence is determined between coordinates of a center of the object and coordinates of a center of the end effector. The determined coordinate correspondence indicates whether a current placement of the object on the end effector satisfies a target placement criterion.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: November 14, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ali Utku Pehlivan, Mohsin Waqar, Paul Zachary Wirth, Todd James Brill
  • Patent number: 11801602
    Abstract: Provided are a mobile robot and a method of driving the same. A method in which the mobile robot moves along with a user includes photographing surroundings of the mobile robot, detecting the user from an image captured by the photographing, tracking a location of the user within the image as the user moves, predicting a movement direction of the user, based on a last location of the user within the image, when the tracking of the location of the user is stopped, and determining a traveling path of the mobile robot, based on the predicted movement direction of the user.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: October 31, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaeyong Ju, Hyeran Lee, Hyunjung Nam, Miyoung Kim, Jaebum Park, Joonah Park
  • Patent number: 11797021
    Abstract: A robot includes a driver; a camera; and a processor configured to: during an interaction session in which a first user identified in an image obtained through the camera is set as an interaction subject, perform an operation corresponding to a user command received from the first user, and determine whether interruption by a second user identified in an image obtained through the camera occurs, and based on determining that the interruption by the second user occurred, control the driver such that the robot performs a feedback motion for the interruption.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: October 24, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaemin Chun, Youngsun Kim, Minseok Han, Segwon Han
  • Patent number: 11780093
    Abstract: A method of controlling an industrial actuator, the method including receiving a manual input in the form of a displacement of an input element; in response to the manual input being a displacement of the input element from the neutral position in a first input direction, controlling the industrial actuator to move in a forward direction along a movement path and with a speed corresponding to a magnitude or a speed of the displacement from a neutral position; and in response to the manual input being a displacement of the input element from the neutral position in a second input direction, controlling the industrial actuator to move in a backward direction along the movement path and with a speed corresponding to a magnitude or a speed of the displacement from the neutral position.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: October 10, 2023
    Assignee: ABB Schweiz AG
    Inventors: Martin Nordvall, Jonas Brönmark, Håkan Fortell
  • Patent number: 11782439
    Abstract: A method for determining and providing alternative routes receives request data associated with a request from a user device. A first canonical route is determined from a plurality of canonical routes based on the request data. Each respective canonical route of the plurality of canonical routes satisfies at least one autonomy criteria associated with whether an autonomous vehicle can travel on the respective canonical route. First route data associated with the first canonical route is provided. Route identification data associated with identifying an alternative canonical route is received after providing the first route data associated with the first canonical route. A second canonical route is determined from the plurality of canonical routes based on the route identification data. Second route data associated with the second canonical route is provided for controlling travel of the autonomous vehicle on the second canonical route.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: October 10, 2023
    Assignee: UATC, LLC
    Inventors: Molly Castle Nix, Dennis Zhao, Eric James Hanson, Sean Rhee Chin
  • Patent number: 11780090
    Abstract: An apparatus, system and method of for certifying a sensor that at least partially navigates an autonomous mobile robot. The apparatus may include at least a robot body; at least one light source resident on the robot body proximate to the sensing camera such that the at least one light source is capable of at least partially irradiating a field of view (FoV) of the sensing camera, wherein the at least one light source has characteristics substantially mated to the sensing camera; and at least one processing system that provides the at least partial navigation. The at least one processing system may execute the steps of: actuating the at least one light source at a predetermined time and for a predetermined duration; monitoring data from the sensing camera for confirmation of the actuating; calculating at least one of the latency, throughput, and reactivity of the sensing camera based on the monitoring; and at least partially navigating based on the calculating.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: October 10, 2023
    Assignee: JABIL INC.
    Inventors: Charles Martin, Christopher Jones
  • Patent number: 11766789
    Abstract: To be able to favorably shoot an object-to-be-shot displayed on a display unit of a remote control-type robot. A shooting system includes a remote control-type robot including a display unit for displaying an image of an object-to-be-shot and that is operated remotely, first image capturing device for shooting the remote control-type robot, and image control device for performing at least one of: replacing the image of the object-to-be-shot displayed on the display unit shot by the first image capturing device; adjusting the image of the object-to-be shot displayed on the display unit; changing the position of the display unit; and changing the posture of the display unit so that the image of the object-to-be-shot displayed on the display unit is made clearer when the display unit of the remote control-type robot falls within a shooting range of the first image capturing device.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: September 26, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takemitsu Mori
  • Patent number: 11759949
    Abstract: A method for controlling a robot is provided. The method includes the steps of: determining a first comparison axis with reference to a first target area specified by a camera module of a robot, and determining a second comparison axis with reference to a second target area specified by a scanner module of the robot and associated with the first target area; and correcting a reference coordinate system associated with the camera module with reference to a relationship between the first comparison axis and the second comparison axis.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: September 19, 2023
    Assignee: Bear Robotics, Inc.
    Inventors: Sanghun Jung, Henry A. Leinhos, Fangwei Li, Ina Liu
  • Patent number: 11753015
    Abstract: A system for controlling an overtake maneuver of a control vehicle comprises a controller structured to determine an overtake velocity for the control vehicle traveling in a vehicle lane to overtake a front vehicle traveling ahead of the control vehicle in the vehicle lane. The controller determines an overtake time for the control vehicle to overtake the front vehicle based on the overtake velocity. The controller determines a direction of traffic in an overtake lane that is adjacent to the vehicle lane. If the direction of traffic in the overtake lane is the same as a direction of traffic in the vehicle lane, and the overtake velocity is less than or equal to an allowed velocity, the controller executes the overtake maneuver by one of adjusting a parameter of an engine and/or a transmission of the control vehicle or providing a command to an operator of the control vehicle.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: September 12, 2023
    Assignee: Cummins Inc.
    Inventors: Vivek Anand Sujan, Thomas M. Yonushonis
  • Patent number: 11744658
    Abstract: A method of operating a robotic control system comprising a master apparatus in communication with an input device having a handle and a slave system having a tool having an end effector whose position and orientation is determined in response to a position and orientation of the handle. The method involves producing a desired end effector position and a desired end effector orientation of the end effector, in response to a current position and a current orientation of the handle. The method further involves causing the input device to provide haptic feedback that impedes translational movement of the handle, while permitting rotational movement of the handle and preventing movement of the end effector, when a rotational alignment difference between the handle and the end effector meets a first criterion. The method further involves re-enabling translational movement of the handle when the rotational alignment difference meets a second criterion.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: September 5, 2023
    Assignee: TITAN MEDICAL INC.
    Inventors: Joseph Kralicky, Peter Cameron, Rene Robert
  • Patent number: 11745346
    Abstract: A robot control system determines which of a number of discretizations to use to generate discretized representations of robot swept volumes and to generate discretized representations of the environment in which the robot will operate. Obstacle voxels (or boxes) representing the environment and obstacles therein are streamed into the processor and stored in on-chip environment memory. At runtime, the robot control system may dynamically switch between multiple motion planning graphs stored in off-chip or on-chip memory. The dynamically switching between multiple motion planning graphs at runtime enables the robot to perform motion planning at a relatively low cost as characteristics of the robot itself change.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: September 5, 2023
    Assignee: REALTIME ROBOTICS, INC.
    Inventors: Daniel Sorin, George Konidaris, Sean Murray, William Floyd-Jones
  • Patent number: 11745345
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for planning by work volumes to avoid conflicts. One of the methods includes receiving a process definition graph for a robot that includes action nodes, wherein the action nodes include (1) transition nodes that represent a motion to be taken by the robot from a respective start location to an end location and (2) task nodes that represent a particular task to be performed by the robot at a particular task location. An initial modified process definition graph that ignores one or more conflicts between respective transition nodes as well as one or more conflicts between respective transition nodes and task nodes is generated from the process definition graph. A refined process definition graph that ignores conflicts between transition nodes and recognizes conflicts between transition nodes and task nodes is generated from the initial modified process definition graph.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: September 5, 2023
    Assignee: Intrinsic Innovation LLC
    Inventors: Jean-Francois Dupuis, Keegan Go, Stoyan Gaydarov
  • Patent number: 11717972
    Abstract: A workbench system comprising: a workbench; a multi-axis robot; a visible light projector; and a controller; wherein the workbench and the robot are located in a common workspace; the controller is configured to: determine a movement operation for the robot; and, using the determined movement operation, control the visible light projector to project a visible light indication onto at least one of a surface of the workbench and a surface of the workspace; the visible light indication indicates a limited area of the workbench and/or workspace, the limited area corresponding to a limited volume of space; and the movement operation is such that, if the robot performs the movement operation, the robot moves entirely within only the limited volume of space.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: August 8, 2023
    Assignee: BAE Systems plc
    Inventors: David Samuel John Holmes, Martin Knott, Daniel James Middleton
  • Patent number: 11701783
    Abstract: Certain aspects relate to systems and techniques for surgical robotic arm admittance control. In one aspect, there is provided a system including a robotic arm and a processor. The processor may be configured to determine a force at a reference point on the robotic arm based on an output of a torque sensor and receive an indication of a direction of movement of the reference point. The processor may also determine that a component of the force is in the same direction as the direction of movement of the reference point, generate at least one parameter indicative of a target resistance to movement of the robotic arm, and control the motor, based on the at least one parameter, to move the robotic arm in accordance with the target resistance.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: July 18, 2023
    Assignee: Auris Health, Inc.
    Inventors: Kurt Christopher Meyer, Shu-Yun Chung, Mingyen Ho
  • Patent number: 11697207
    Abstract: A computerized method for estimating joint friction in a joint of a robotic wrist of an end effector. Sensor measurements of force or torque in a transmission that mechanically couples a robotic wrist to an actuator, are produced. Joint friction in a joint of the robotic wrist that is driven by the actuator is computed by applying the sensor measurements of force or torque to a closed form mathematical expression that relates transmission force or torque variables to a joint friction variable. A tracking error of the end effector is also computed, using a closed form mathematical expression that relates the joint friction variable to the tracking error. Other aspects are also described and claimed.
    Type: Grant
    Filed: October 4, 2022
    Date of Patent: July 11, 2023
    Assignee: Verb Surgical Inc.
    Inventor: Alireza Hariri
  • Patent number: 11685049
    Abstract: A method of localizing a robot includes receiving odometry information plotting locations of the robot and sensor data of the environment about the robot. The method also includes obtaining a series of odometry information members, each including a respective odometry measurement at a respective time. The method also includes obtaining a series of sensor data members, each including a respective sensor measurement at the respective time. The method also includes, for each sensor data member of the series of sensor data members, (i) determining a localization of the robot at the respective time based on the respective sensor data, and (ii) determining an offset of the localization relative to the odometry measurement at the respective time. The method also includes determining whether a variance of the offsets determined for the localizations exceeds a threshold variance. When the variance among the offsets exceeds the threshold variance, a signal is generated.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: June 27, 2023
    Assignee: Boston Dynamics, Inc.
    Inventor: Matthew Jacob Klingensmith
  • Patent number: 11679515
    Abstract: A robot with an impact buffering member on the surface of a robot arm for alleviating the impact when the arm contacts an object; and a contact detection unit for detecting a contact between the robot arm and object. The unit has a soft porous member on the front surface side of the impact buffering member and softer than the member; a housing member including the soft porous member and formed of a flexible material; a fluid discharge pipe for discharging a fluid inside the housing member when the object makes contact so the volume of the housing member decreases; and a volume change detection portion for detecting a change in volume of the housing member by utilizing the discharged fluid. It is possible to secure sufficient safety in a cooperative work between a person and a robot or the like, even when the person contacts the robot arm.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: June 20, 2023
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Masayuki Kamon, Soichi Tamada
  • Patent number: 11679498
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for rule execution in an online robotics system. One of the systems includes an execution engine subsystem and an execution memory subsystem. The execution engine receives rules having types and subtypes that represent a particular entity in an operating environment of a robot, provides subscription requests to the execution memory subsystem, and receives events emitted by the execution memory subsystem. The an execution memory receives subscription requests from the execution engine subsystem, receives new observations, converts the new observations into fact updates, performs pattern matching with the fact updates against the patterns of the subscription requests, and emits events to the execution engine subsystem for patterns that have been matched by the fact updates.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 20, 2023
    Assignee: Intrinsic Innovation LLC
    Inventor: Tim Niemueller
  • Patent number: 11670180
    Abstract: Obstruction detection and management systems and methods include, in an Air Traffic Control (ATC) system including one or more servers communicatively coupled to a plurality of passenger drones via one or more wireless networks, receiving passenger drone data from a plurality of passenger drones, wherein the passenger drone data comprises operational data for the plurality of passenger drones and obstruction data from one or more passenger drones; updating an obstruction database based on the obstruction data, wherein the obstruction database comprises entries of obstructions with their height, size, location, and a permanency flag comprising either a temporary obstruction or a permanent obstruction; monitoring a flight plan for the plurality of passenger drones based on the operational data; and transmitting obstruction instructions to the plurality of passenger drones based on analyzing the obstruction database with their flight plan.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: June 6, 2023
    Assignee: Metal Raptor, LLC
    Inventor: Lee Priest
  • Patent number: 11670179
    Abstract: Static obstruction detection and management systems and methods include, in an Air Traffic Control (ATC) system for any flying vehicles including any of passenger drones and Unmanned Aerial Vehicles (UAVs), receiving monitored data from a plurality flying vehicles related to static obstructions; receiving external data from one or more external sources related to the static obstructions; analyzing the monitored data and the external data to populate and manage an obstruction database of the static obstructions; and transmitting obstruction instructions to the plurality of flying vehicles based on analyzing the obstruction database with their flight plan.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: June 6, 2023
    Assignee: Metal Raptor, LLC
    Inventor: Lee Priest