Patents Examined by Robert Tavlykaev
  • Patent number: 9946024
    Abstract: Methods and systems for grating couplers incorporating perturbed waveguides are disclosed and may include in a semiconductor photonics die, communicating optical signals into and/or out of the die utilizing a grating coupler on the die, where the grating coupler comprises perturbed waveguides. The perturbed waveguides may include rows of continuous waveguides with scatterers extending throughout a length of said perturbed waveguides a variable width along their length. The grating coupler may comprise a single polarization grating coupler comprising perturbed waveguides and a non-perturbed grating. The grating coupler may comprise a polarization splitting grating coupler (PSGC) that includes two sets of perturbed waveguides at a non-zero angle, or a plurality of non-linear rows of discrete shapes. The PSGC may comprise discrete scatterers at an intersection of the sets of perturbed waveguides. The grating coupler may comprise individual scatterers between the perturbed waveguides.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: April 17, 2018
    Assignee: Luxtera, Inc.
    Inventors: Lieven Verslegers, Attila Mekis
  • Patent number: 9946044
    Abstract: An equipment cabinet with a movable stile is disclosed herein. In an exemplary embodiment, the equipment cabinet comprises a housing body defining a front opening, independently operable first and second doors, and a movable stile positioned within the front opening and between the first and second doors. First and second sealing pads are positioned between the movable stile and the housing body when the movable stile is in a closed position. First and second sealing gaskets, respectively, are attached to interiors of the first and second doors, where at least a portion of each of the first and second sealing gaskets are positioned between the movable stile and the first or second doors when the first and second doors are closed. Thus, the equipment cabinet has independently operable doors and facilitates increased access to an interior of the equipment cabinet while maintaining an environmental seal.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: April 17, 2018
    Assignee: CCS Technology, INC.
    Inventors: Grzegorz Konrad Gralewski-Sek, Michal Ruda
  • Patent number: 9946033
    Abstract: A fiber optic connector includes a ferrule configured to receive and support one or more optical fibers and at least one component coupled to a surface of the ferrule by an adhesive. The at least one component overlays a footprint area defined on the surface to which the adhesive is applied, and the surface has a plurality of recessed formations within the footprint area to accommodate the adhesive.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: April 17, 2018
    Assignee: Corning Optical Communications LLC
    Inventor: Kevin Eugene Elliott
  • Patent number: 9921377
    Abstract: A substrate comprises multiple interposers. Each interposer includes interposer elements, where an optical device is coupled to at least some of the interposer elements; two passages formed through the interposer, where each passage is registered with respect to the interposer elements; two blind holes formed in a surface of the interposer, where each blind hole is concentric with a different passage; two annular troughs formed in the surface, each concentric with a different passage, and an annular area separates the annular troughs from an outer diameter of the corresponding concentric passage; and two spherical registration elements, where each registration element is positioned on uncured adhesive on one of the annular areas, where the passages enable a vacuum to be drawn through such that the registration elements are pulled toward the surface of the interposer to self-align to the inner diameter of the blind holes.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: March 20, 2018
    Assignee: Hewlett Packard Enterprise Department LP
    Inventors: Paul K Rosenberg, Sagi V Mathai, Michael Renne Ty Tan
  • Patent number: 9910235
    Abstract: A communication enclosure is described that includes an enclosure body having a first body portion and a second body portion. An adapter mounting mechanism is disposed in the first body portion, and a connector adapter mounted into the mounting mechanism that is configured to accept an optical fiber connector. The enclosure includes at least one integrated tool for terminating field mountable optical fiber connectors wherein the at least one integrated tool is disposed on one of the first body portion and the second body portion. In an exemplary aspect, the at least one integrated tool is a connector polishing platform.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: March 6, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Donald K. Larson, Joseph C. Sawicki, Zachary M. Thompson, William J. Clatanoff
  • Patent number: 9891396
    Abstract: An electrical interface includes an insulating body, first electrodes, and second electrodes. The insulating body includes a first front edge surface and a second front edge surface facing in a direction along a transmission direction of an optical signal at an optical interface and having different heights. The first electrode and the second electrode are provided on the insulating body so as to have a thickness from the first front edge surface and the second front edge surface in a direction of the height. A first flexible wiring board and a second flexible wiring board include a first area and a second area extending in directions along the first front edge surface and the second front edge surface, respectively, of the insulating body, and include, in the first area and the second area, first pads and second pads electrically connected with the first electrodes and the second electrodes.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: February 13, 2018
    Assignee: OCLARO JAPAN, INC.
    Inventor: Takuma Ban
  • Patent number: 9874713
    Abstract: Aspects of the present disclosure relates to an indexing terminal including a multi-fiber ruggedized de-mateable connection location, a first single-fiber ruggedized de-mateable connection location and a second single-fiber ruggedized de-mateable connection location. The multi-fiber ruggedized de-mateable connection location includes a plurality of fiber positions with one of the fiber positions optically coupled to the first single fiber ruggedized de-mateable connection location.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: January 23, 2018
    Assignee: CommScope Technologies LLC
    Inventors: Thomas Marcouiller, Oscar Fernando Bran de León, Erik David Bishop, William B. Bryan, Chien-An Chen, Gary W. Adams
  • Patent number: 9874705
    Abstract: An optical waveguide module includes an optical waveguide sheet including multiple optical waveguides, and a light-emitting device and a light-receiving device each positioned over a surface of the optical waveguide sheet. At least one of the optical waveguides includes a first mirror, a second mirror, and a slit. The first mirror is configured to reflect light entering the corresponding optical waveguide from its first end to the light-receiving device or to reflect light emitted from the light-emitting device toward the first end of the corresponding optical waveguide. The second mirror is configured to reflect light entering the corresponding optical waveguide from its second end toward the surface of the optical waveguide sheet. The slit is provided between the second mirror and the second end of the corresponding optical waveguide. The corresponding optical waveguide is discontinuous across the slit.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: January 23, 2018
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Rie Gappa, Osamu Daikuhara, Shinichiro Akieda, Satoshi Moriyama, Hongfei Zhang, Mitsuki Kanda
  • Patent number: 9864109
    Abstract: A plasmonic device having a transparent conducting oxide (TCO) waveguide and a tunable voltage applied across the TCO and a metal layer for modulating an input optical signal.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 9, 2018
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Ho Wai Lee, Stanley Burgos, Georgia Papadakis, Harry A. Atwater
  • Patent number: 9835851
    Abstract: The force of a piezoelectric element is efficiently transferred to an optical fiber without attenuation, so that the vibration of the optical fiber becomes large. Provided is an optical fiber scanner including an optical fiber which has an elongated cylindrical shape in which illumination light emitted from a light source is guided and can emerge from a distal end thereof and whose distal end can be vibrated in a direction intersecting the longitudinal direction thereof; and at least one piezoelectric element which have a plate shape polarized in a thickness direction thereof and which are separately bonded to an outer circumferential surface of the optical fiber closer to a base side than to a distal end thereof.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: December 5, 2017
    Assignee: OLYMPUS CORPORATION
    Inventors: Tomoki Funakubo, Hiroshi Tsuruta, Morimichi Shimizu, Yasuaki Kasai
  • Patent number: 9829662
    Abstract: A pluggable optical transceiver implementing a pull-tab is disclosed. The pull-tab includes arms assembled with a body of the optical transceiver and a holder connecting the arms. The holder, which is provided in ends of the arms, provides a tab and a bridge, where the tab and the bridge form a space where an optical fiber mated with the optical transceiver is secured. The tab is dynamically engaged with the bridge after the optical fiber is set on the bridge.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: November 28, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Hiromi Kurashima
  • Patent number: 9829625
    Abstract: An optical fiber comprises a glass fiber which comprises a core and a cladding, a primary resin coating layer which covers the periphery of the glass fiber, and a secondary resin coating layer which covers the periphery of the primary resin coating layer. The glass fiber is a multimode fiber having a core diameter of 40-60 ?m and a cladding diameter of 90-110 ?m, and the primary resin coating layer is a layer formed by curing a curable resin composition which comprises oligomers, monomers, and a reaction initiator, the curable resin composition containing a one-end-capped oligomer in an amount of 30% by mass or larger based on all the oligomers.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: November 28, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yuya Homma
  • Patent number: 9823432
    Abstract: A termination field and a guide member are independently pivotally coupled to a base body. The termination field pivots relative to the base body along a path of travel. The guide member is coupled to the base body to provide bend radius protection to cables plugged into the termination field. The guide member defines a channel leading the cables from the termination field towards a first side of the base body at an exterior of the base body. In certain examples, the guide member and termination field pivot relative to the base body about different hinge axes. In other examples, the termination field pivots with the guide member for part of the path of travel and relative to the guide member for another part of the path of travel.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 21, 2017
    Assignees: ADC Czech Republic, S.R.O., CommScope Connectivity Belgium BVBA
    Inventors: Zoltan Alexi, Bernadus Johannes Nicolas Geling, Simon Reyndert Christiani, Rudi Verbruggen, Johan Geens
  • Patent number: 9815731
    Abstract: Tapered core fibers are produced using tapered core rods that can be etched or ground so that a fiber cladding has a constant diameter. The tapered core can be an actively doped core, or a passive core. One or more sleeving tubes can be collapsed onto a tapered core rod and exterior portions of the collapsed sleeving tubes can be ground to provide a constant cladding diameter in a fiber drawn from the preform.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: November 14, 2017
    Assignee: nLIGHT, Inc.
    Inventors: Joona Koponen, Laeticia Petit, Petteri Väinänen
  • Patent number: 9791649
    Abstract: A mounting frame system is disclosed that facilitates the mounting of optical connector modules to printed circuit boards. The mounting frame system can include a mounting frame that is configured to attach to a printed circuit board, and is adapted to attach to a connector module. Thus, the mounting frame system can further allow releasable mounting of optical connector modules to the printed circuit board, such that the mounting is achieved in a safe and reliable manner.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: October 17, 2017
    Assignee: FCI Asia Pte. Ltd.
    Inventor: Jeroen De Bruijn
  • Patent number: 9791642
    Abstract: A chip packaging includes a first part comprising a support; and a core polymer layer transversally structured so as to exhibit distinct residual portions comprising: first waveguide cores each having a first height and disposed within said inner region; and one or more first alignment structures disposed within said outer region. A second part of the packaging comprises: second waveguide cores, each having a same second height; and one or more second alignment structures complementarily shaped with respect to the one or more first alignment structures, and wherein, the first part structured such that said inner region is recessed with respect to the outer region, to enable: the second waveguide cores to contact the first waveguide cores; and the one or more second alignment structures to respectively receive, at least partly, the one or more first alignment structures. The invention is further directed to related passive alignment methods.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: October 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: Roger F. Dangel, Daniel S. Jubin, Antonio La Porta, Bert J. Offrein
  • Patent number: 9784924
    Abstract: A protective assembly method using a transparent layer within the fiber interconnect system aids in optical coupling by preventing an air gap from forming between the fiber cores within a connector. A thin transparent film (or with adhesive) is placed over the fiber end-faces at the connector interface, the film having characteristics which allows it to conform to the fiber end and minimize coupling loss between fibers. The film is sized to fit connectors faces and can be temporary, being replaced with each installation. A coating can also applied to the connector surface, providing a similar effect, as well as structurally enhancing the connector surfaces.
    Type: Grant
    Filed: June 28, 2015
    Date of Patent: October 10, 2017
    Assignee: ULTRA COMMUNICATIONS, INC.
    Inventors: Charles B. Kuznia, Richard J. Pommer, Joseph F. Ahadian, Richard T. Hagan, Man W. Wong
  • Patent number: 9784931
    Abstract: An optical waveguide module includes an optical waveguide sheet including multiple optical waveguides, and a light-emitting device and a light-receiving device each positioned over a surface of the optical waveguide sheet. At least one of the optical waveguides includes a first mirror, a second mirror, and a slit. The first mirror is configured to reflect light entering the corresponding optical waveguide from its first end to the light-receiving device or to reflect light emitted from the light-emitting device toward the first end of the corresponding optical waveguide. The second mirror is configured to reflect light entering the corresponding optical waveguide from its second end toward the surface of the optical waveguide sheet. The slit is provided between the second mirror and the second end of the corresponding optical waveguide. The corresponding optical waveguide is discontinuous across the slit.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: October 10, 2017
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Rie Gappa, Osamu Daikuhara, Shinichiro Akieda, Satoshi Moriyama, Hongfei Zhang, Mitsuki Kanda
  • Patent number: 9784916
    Abstract: A high-refractive-index single-compensation-scattering-cylinder right-angle waveguide of a cylindrical square lattice photonic crystal, being a photonic crystal formed by arranging a first dielectric cylinder having a high refractive index in a background dielectric having a low refractive index in a square lattice; one row and one column of the first dielectric cylinders having a high refractive index are removed from the photonic crystal to form a right-angle waveguide; a second dielectric cylinder having a high refractive index is arranged at a turn of the right-angle waveguide; and the second dielectric cylinder is a compensation scattering cylinder, and the first dielectric cylinders are high-refractive-index cylinders. The structure has an extremely low reflectivity and an extremely high transmission rate, thus facilitating an integration of a large-scale light path.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: October 10, 2017
    Inventor: Zhengbiao Ouyang
  • Patent number: 9772447
    Abstract: A method of producing a heterogeneous photonic integrated circuit includes integrating at least one III-V hybrid device on a source substrate having at least a top silicon layer, and transferring by transfer-printing or by flip-chip bonding the III-V hybrid device and at least part of the top silicon layer of the source substrate to a semiconductor-on-insulator or dielectric-on-insulator host substrate.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: September 26, 2017
    Assignees: IMEC VZW, Universiteit Gent
    Inventors: Shahram Keyvaninia, Dries Van Thourhout, Gunther Roelkens