Patents Examined by Roberto Fabian, Jr.
  • Patent number: 12038385
    Abstract: A method for examining a culture solution containing a pH indicator and accommodated in a culture container includes: measuring, as a baseline intensity, an intensity of light that has passed through a solution and the culture container; measuring, as a measurement intensity, an intensity of light that has passed through the culture solution and the culture container; obtaining light source information including first information pertaining to the light source that is provided when measuring the baseline intensity and second information pertaining to the light source that is provided when measuring the measurement intensity; and on the basis of the baseline intensity, the measurement intensity, and the light source information, calculating an absorbance of the pH indicator at at least one wavelength included in emitted light from the light source.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: July 16, 2024
    Assignee: Evident Corporation
    Inventor: Tadashi Hirata
  • Patent number: 12018930
    Abstract: A transient digital moire phase-shifting interferometric measuring device and method for a surface shape of an optical element solves a defect that an instantaneous vibration resistance needs to be sacrificed for a measurement range when using a two-step carrier splicing method, and expands the measurement range of a digital moire phase-shifting method while retaining instantaneous anti vibration characteristics of the digital moire phase-shifting method. The transient digital moire phase-shifting interferometric measuring device includes a light source, a beam splitter, a reference lens, a first polarization grating, a measured lens, a second polarization grating, a first imaging objective lens, a first camera, a second imaging objective lens and a second camera. Different carriers are loaded through a spectral performance of a polarization grating, and the polarization grating is used to separate two beams of an interference light, and two actual interference patterns are obtained at a same time.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: June 25, 2024
    Assignee: BEIJING INSTITUTE OF TECHNOLOGY
    Inventors: Qun Hao, Yao Hu, Zhen Wang, Shaopu Wang
  • Patent number: 12019027
    Abstract: A test system may be used to measure biological samples and other samples. Samples may be placed on a test substrate such as a test slide or other transparent substrate. The substrate may have patches of reactant-coated gold nanorods or other nanostructures that exhibit plasmonic resonances. An accessory may be removably coupled to a portable electronic device such as a cellular telephone. The accessory may have a lens and a light source that emits light into an edge of the test slide. The light may scatter from the nanostructures in a perpendicular direction towards a camera in the portable electronic device so that the portable electronic device can gather images of the illuminated substrate and measure spectral shifts associated with reactions between the samples and the reactant, thereby helping to analyze the composition of the samples.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: June 25, 2024
    Assignee: Apple Inc.
    Inventors: Clarisse Mazuir, Jack E. Graves, Malcolm J. Northcott
  • Patent number: 11988557
    Abstract: Methods and systems are described for use in determination of the presence, type (static or AC), direction, and/or strength of an electric field. Methods include examination of a gaseous sample to determine the presence of perturbation effects brought about by dielectrophoretic forces acting on components of the gaseous sample, and thereby, to identify the presence of an electric field. Examination of a gaseous sample can include Raman spectroscopy. A gaseous sample can be analyzed to determine the presence of molecular polarization due to an induced dipole on a polarizable molecule.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: May 21, 2024
    Assignee: Battelle Savannah River Alliance, LLC
    Inventors: Kimberly Alicia Strange Fessler, Steven Michael Serkiz
  • Patent number: 11982626
    Abstract: The invention generally relates to improved enhancement structures for use in surface-enhanced Raman scattering (SERS) and/or surface-enhanced fluorescence-based analysis.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: May 14, 2024
    Assignee: ARMONICA TECHNOLOGIES, INC.
    Inventors: Steven Roy Julien Brueck, Xin Jin, Alexander Neumann, Victor C. Esch
  • Patent number: 11977030
    Abstract: Disclosed herein are systems and methods of obtaining a derivative Raman spectrum using an excitation or Raman pump beam whose wavelength is modulated in any suitable manner such as, for example, stochastically. Shifting the wavelength of the input excitation by a small amount in approaches like SERDS can isolate the Raman scatter from other spectral artifacts and reduce the false detection rate. For example, an input excitation sequence can be correlated with the response of an individual pixel of a detector. From this, pixels that have captured Raman scattered photons can be separated from pixels capturing non-Raman photons. These techniques can be expanded to other fields and/or types of spectroscopies that utilize a dispersive element detector with time-dependent spectral features.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: May 7, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael Zervas, Ian W Hunter
  • Patent number: 11960042
    Abstract: Aspects of the present disclosure are directed to laser interferometric systems, methods, and structures exhibiting superior laser phase noise tolerance particularly in seismic detection applications wherein laser requirements are advantageously relaxed by employing a novel configuration wherein the same laser which generates an outgoing signal is coherently detected using the same laser as local oscillator and fiber turnarounds are employed that result in the cancellation and/or mitigation of undesired mechanical vibration.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 16, 2024
    Assignee: NEC Corporation
    Inventors: Ezra Ip, Yue-Kai Huang, Fatih Yaman
  • Patent number: 11953443
    Abstract: An actively Q-switched laser induced breakdown spectroscopy (LIBS) probe, utilizing an optical fiber, a pump beam transmitted through the optical fiber, a coupler, and a lens for collimating the pump beam. The actively Q-switched laser, coupled to a sensor which provides information to a computer that controls a high voltage pulser providing a pulse to a Pockels cell located within the laser which can selectively cause the laser to pulse, resulting in high energy pulses and a second lens for focusing the output pulse such that it creates a plasma or spark. The light from the spark is captured and directed back through an optical system to remote equipment for elemental and/or molecular analysis.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: April 9, 2024
    Assignee: Energy, United States Department of
    Inventors: Dustin Langdon McIntyre, Daniel Allen Hartzler
  • Patent number: 11953351
    Abstract: A tactile and proximity sensor includes a light source, a light receiver, an elastic structure, and a reflecting mirror. The light source emits light. The light receiver receives light and generates a signal indicating a result of reception of the light. The elastic structure includes an elastic body deformable in response to an external force and includes a reflecting portion to reflect light and transmitting portions to transmit light. The reflecting mirror faces the light source to guide the light from the light source to the reflecting portion and the transmitting portion.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: April 9, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Takatoshi Kato, Hiroshi Watanabe, Kohei Sugahara
  • Patent number: 11921047
    Abstract: Raman analysis apparatus capable of real-time Raman analysis while performing an experiment under elevated temperature and pressure conditions in surface or material property analysis of a powder solid sample, a single-crystal sample, a high-concentration liquid sample, or the like may be provided.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: March 5, 2024
    Assignee: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Seungwoo Lee, Gwang Mok Kim, Jong Hwan Oh
  • Patent number: 11898959
    Abstract: Raman systems and methods use advantages offered by increased laser mobility/path length and photon migration to analyze diffusively scattering solids, including pharmaceuticals. A collimated laser excitation beam having a first diameter induces from a sample a backscattered collimated Raman collection beam with a second diameter. The collimated laser excitation beam and the collimated Raman collection beam form a counter-propagating collimated optical path, and the collimated laser excitation beam is preferably smaller in diameter than the diameter of the backscattered collimated Raman beam. The collection beam to a spectrograph for Raman analysis of the sample. A Raman calibration standard may be placed in the collimated optical path, and/or the sample may be supported in a reflective holder that may be at least partially spherical and/or may form part of a multi-well plate. The counter-propagating collimated optical path may be contained within a Raman microscope.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: February 13, 2024
    Inventor: Harry Owen
  • Patent number: 11892406
    Abstract: A method of assaying the interaction of a molecule and a lipid bilayer is described. The method employs a microfluidic device comprising a substrate having at least one concave microcavity with a metallic surface defining an aperture and a liquid disposed within the microcavity, a lipid bilayer suspended across the aperture, and a microfluidic channel containing a liquid disposed on top of the substrate in fluid communication with the lipid bilayer. The method comprises the steps of passing a liquid containing a test molecule across the microfluidic channel, and monitoring lipid bilayer molecule interactions by plasmonically enhanced Raman or fluorescence spectroscopy configured for plasmonic enhancement of a detection signal evolving from the test molecule or lipid bilayer. Also described in a microfluidic device configured to perform the method of the invention.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: February 6, 2024
    Assignee: DUBLIN CITY UNIVERSITY
    Inventors: Tia Keyes, Rokas Sakalys, Kiang Wei Kho, Agata Steplewska, Aurelien Gimenez, Nirod Kumar Sarangi
  • Patent number: 11885609
    Abstract: The invention describes a metrology system allowing for the reduction of the errors caused by vibration of the production floor and allowing for measurements of the thickness of wafers in motion. This is accomplished by performing simultaneous measurements of spectra containing interference signals containing distance information using a plurality of probes positioned on both sides of the measured wafer on the same detector at the same time or by means of plurality of synchronized detectors. System is also able to measure thickness of the individual optically accessible layers present in the sample.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: January 30, 2024
    Inventor: Wojciech Jan Walecki
  • Patent number: 11874229
    Abstract: An optical metrology device performs multi-wavelength polarized confocal Raman spectroscopy. The optical metrology device uses a first light source to produce a first light beam with a first wavelength and a second light source to produce a second light beam with a second wavelength. A dichroic beam splitter partially reflects the first light beam and transmits the second light beam to combine the light beams along a same optical axis that is incident on a sample. The dichroic beam splitter directs the Raman response emitted from the sample in response to the first light beam and the second light beam together towards at least one spectrometer and directs the first light beam away from the at least one spectrometer. A chopper may be used to isolate the Raman response to the first and second light beams that is received and spectrally measured by the at least one spectrometer.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: January 16, 2024
    Assignee: Onto Innovation Inc.
    Inventor: George Andrew Antonelli
  • Patent number: 11841316
    Abstract: The present disclosure discloses a mechanism for aligning and orienting a probe in an optical system. The mechanism includes a sensor head, which are defined with one or more provisions. Further, the mechanism includes at least one block member, which is movably disposed within the one or more provisions in the sensor head. The at least one block member is defined with a cavity to accommodate a probe. During contact of the probe with a surface of the subject, a torque is generated, which facilitates in aligning the probe on the surface of the subject. The block member is configured to tilt corresponding to movement of the probe, for aligning the probe at an angle on the surface of the subject.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: December 12, 2023
    Inventors: Anupam Lavania, Shilpa Malik
  • Patent number: 11841325
    Abstract: There are provided a substrate including a three-dimensional (3D) nanoplasmonic composite structure, a method of fabricating the same, and a rapid analysis method using the same. More specifically, there are provided a substrate including a 3D plasmonic-nanostructure/target-molecule composite thin film composed of an analyte and a plasmonic nanostructure and formed by applying a voltage to a plasmonic electrode in an electrochemical cell including an analyte and a metal precursor to induce an analyte molecule on the electrode and performing electrochemical deposition (or electrodeposition), a method of fabricating the same, and a rapid analysis method using the same.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: December 12, 2023
    Assignee: KOREA INSTITUTE OF MATERIALS SCIENCE
    Inventors: Sung-gyu Park, Dong-ho Kim, Ho-sang Jung, Mijeong Kang, Iris Baffour Ansah
  • Patent number: 11841317
    Abstract: A gas detection device and process detect a target gas for monitoring an area for the target gas. A radiation source emits electromagnetic radiation (50) that penetrates the area and impinges on an array of filters (15, 25) that distributes the impinging radiation (50) onto a first gas photosensor (35), a second gas photosensor (37) and a reference photosensor (36). The first gas photosensor (35) is only sensitive to radiation in a first wavelength range, the second gas photosensor (37) is only sensitive to radiation in a second wavelength range and the reference photosensor (36) is only sensitive to radiation in a reference wavelength range. The wavelength ranges are spaced apart from one another. An analysis unit (10) analyzes signals [Sig(35), Sig(36), Sig(37)] from the three photosensors (35, 36, 37) and carries out three pair comparisons to determine whether or not the target gas is present.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: December 12, 2023
    Assignee: Dräger Safety AG & Co. KGaA
    Inventor: Andreas Flammiger
  • Patent number: 11828747
    Abstract: An optical multimodal detection system for targeted detection of cancer biomarkers in blood serum. The system comprises of a nano-biosensor, a chamber for receiving the nano-biosensor, a localized surface plasmon resonance (LSPR) based detector, a plasmon enhanced fluorescence (PEF) based detector and a surface-enhanced Raman scattering (SERS) based detector. The nano-biosensor comprises of a glass substrate provided with an active site for receiving a sample of blood serum, and is dimensioned to define a flow channel for introducing the sample of blood serum into the nano-biosensor. The nano-biosensor is provided with a layer of amino-silane compound coating over the glass substrate and a plurality of gold nano-urchins (GNU) bound to the layer of silicone compound.
    Type: Grant
    Filed: November 27, 2021
    Date of Patent: November 28, 2023
    Assignee: M.I.S. ELECTRONICS INC.
    Inventors: Mohammad E Khosroshahi, Yesha Patel
  • Patent number: 11821912
    Abstract: Methods of producing augmented probe system images and associated probe systems. A method of producing an augmented probe system image includes recording a base probe system image, generating the augmented probe system image at least partially based on the base probe system image, and presenting the augmented probe system image. The augmented probe system image includes a representation of at least a portion of the probe system that is obscured in the base probe system image. In some examples, a probe system includes a chuck, a probe assembly, an imaging device, and a controller programmed to perform methods disclosed herein.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: November 21, 2023
    Assignee: FormFactor, Inc.
    Inventors: Anthony James Lord, Gavin Neil Fisher, David Randle Hess
  • Patent number: 11821841
    Abstract: A method and system for classifying a tissue specimen is provided. The method includes: a) interrogating a tissue specimen with a first interrogation light; b) detecting first light from the tissue specimen resulting from the interrogation, wherein the first light includes a first scattered light component and a first fluorescence light component, and producing first signals; c) interrogating the tissue specimen with a second interrogation light at a second excitation wavelength, wherein the first and second excitation wavelengths are within about 2 nm of each other; d) detecting second light from the tissue specimen resulting from the interrogation, wherein the second light includes a second scattered light component and a second fluorescence light component, and producing second signals; e) determining a difference between the first and second lights; f) determining a fluorescence spectrum produced by the interrogation of the tissue specimen; and g) classifying the tissue specimen.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: November 21, 2023
    Assignee: CytoVeris, Inc.
    Inventors: Rishikesh Pandey, Alan Kersey