Patents Examined by Rochelle D Turchen
  • Patent number: 10682107
    Abstract: Three-dimensional imaging of a breast tissue is achieved by acquiring a series of X-ray projection images from various angles. A three-dimensional image constructed from the projection images by a computer provides information to the operator to select a coordinate point within the breast from which to obtain a biopsy sample. Acquisition of projection images and construction of three-dimensional images is continued during the insertion of the needle into the breast, during positioning the needle towards the coordinate point, during the sampling and after the sampling. The advantages of utilizing tomosynthesis for breast tissue imaging over stereo imaging include better image quality, easier coordinate measurements within a tissue, ease of use of the equipment by the medical personnel, and fewer image artifact problems.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: June 16, 2020
    Assignee: PHILIPS DIGITAL MAMMOGRAPHY SWEDEN AB
    Inventors: Torbjörn Hjärn, Magnus Hemmendorff
  • Patent number: 10660615
    Abstract: An apparatus for deriving tissue temperature from thermal strain includes a thermal strain measuring module. The module uses ultrasound (156, 158) to measure thermal strain in a region, within a subject, that surrounds a location (166a, 166f) where a temperature sensor is disposed. Also included is a temperature measurement module configured for, via the sensor, measuring a temperature at the sensor while the sensor is inside the subject. Further included is a patient-specific thermal-strain-to-temperature-change proportionality calibration module. The calibration module is configured for calibrating (S238) a coefficient and for doing so based on a measurement of a temperature parameter at that location derived from output of the temperature measurement module and on a measurement of thermal strain at that location obtained via the strain measuring module.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: May 26, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shriram Sethuraman, Ajay Anand, William Tao Shi
  • Patent number: 10660769
    Abstract: Devices, systems, and methods configured to assess the severity of a blockage in a vessel and, in particular, a stenosis in a blood vessel, provide measurements of a vessel that allow assessment of the vessel and, in particular, any stenosis or lesion of the vessel, simulate diagnostic visualizations a first visualization device and a second visualization device. For example, the methods can include displaying, on a first visualization device, an image of the vessel with treatment diagnostic visualizations based on obtained pressure measurements and displaying, on a second visualization device, a portion of the image of the vessel with diagnostic visualizations based on the obtained pressure measurements, wherein the portion of the image of the vessel displayed on the second visualization device is a close up of a region of interest of the vessel.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: May 26, 2020
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventor: Jacqueline Keller
  • Patent number: 10646105
    Abstract: The present invention is directed to an achromatic endoscope which employs a diffractive microlens. Along with a broadband rotary joint and a custom 800 nm SD-OCT system, ultrahigh-resolution 3D volumetric imaging over a large area becomes possible. The diffractive microlens can be used directly with a GRIN lens, making the endoscope design simpler and cost effective. Preliminary ex vivo 3D intraluminal imaging was performed with the endoscope in conjunction with a home-built broadband rotary joint and a spectral-domain OCT system, demonstrating the performance of the diffractive endoscope. Considering the miniature OCT imaging probe is the required component for using the OCT technology in internal organs, the proposed approach will have a broad impact on endoscopic OCT imaging by improving OCT resolution in any applications that involve a miniature OCT probe, as intravascular OCT imaging, gastrointestinal (GI) tract imaging, airway imaging etc.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: May 12, 2020
    Assignee: The Johns Hopkins University
    Inventors: Xingde Li, Anqi Zhang, Jiefeng Xi
  • Patent number: 10638954
    Abstract: Apparatus, including a magnetic tracking system, which generates a magnetic field near a living subject's body, and a probe, having a distal end that can contact registration points on a surface of the body. The probe has a contact sensor, located within the distal end, that outputs first signals indicative of a quality of the contact between the distal end with the registration points. Located within the distal end is a magnetic detector that outputs second signals that are indicative of respective positions of the registration points in a coordinate frame of the magnetic tracking system. A processor receives a tomographic image of the subject, and verifies, based on the quality of the contact indicated by the first signals, that the registration points are valid, and registers the tomographic image in the coordinate frame of the magnetic tracking system using the positions of the valid registration points.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: May 5, 2020
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Vadim Gliner, Assaf Govari
  • Patent number: 10638982
    Abstract: Systems and methods for non-invasive blood pressure measurement are disclosed. In some embodiments, a system comprises a wearable member configured to generate first and second signals (e.g., PPG signals), and a blood pressure calculation system. The blood pressure calculation system includes a wave selection module configured to identify subsets of waves of the signals, a feature extraction module configured to generate sets of feature vectors form the subsets of waves, and a blood pressure processing module configured to calculate an arterial blood pressure value based on the sets of feature vectors and an empirical blood pressure calculation model, the empirical blood pressure calculation model configured to receive the sets of feature vectors as input values. The blood pressure calculation system further includes a communication module configured to provide a message including or being based on the arterial blood pressure value.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: May 5, 2020
    Assignee: Spry Health, Inc.
    Inventors: Elad Ferber, Ramkrishnan Narayanan, Derya Gol Gungor
  • Patent number: 10634741
    Abstract: A system and method for locating magnetic material. In one embodiment the system includes a magnetic probe; a power module in electrical communication with the magnetic probe to supply current to the magnetic probe; a sense module in electrical communication with the magnetic probe to receive signals from the magnetic probe; and a computer in electrical communication with the power module and the sense module. The computer generates a waveform that controls the supply of current from the power module and receives a signal from the sense module that indicates the presence of magnetic material. The magnetic probe is constructed from a material having a coefficient of thermal expansion of substantially 10?6/° C. or less and a Young's modulus of substantially 50 GPa or greater. In one embodiment magnetic nanoparticles are injected into a breast and the lymph nodes collecting the particles are detected with the probe and deemed sentinel nodes.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 28, 2020
    Assignee: ENDOMAGNETICS LTD.
    Inventor: Simon Richard Hattersley
  • Patent number: 10625055
    Abstract: A trackable guidewire apparatus and method for use are described. Longitudinally spaced proximal and distal guidewire ends are separated by a guidewire body. A plurality of longitudinally spaced position sensors are configured to provide signals corresponding to a three-dimensional position of at least one position sensor in a coordinate system of an associated tracking system in response to an electromagnetic field/stimulus. At least one retention mechanism is provided for maintaining the medical device in a predetermined retention position longitudinally along the guidewire body. At least one stop structure is provided in a predetermined stop position longitudinally along the guidewire body.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: April 21, 2020
    Assignee: THE CLEVELAND CLINIC FOUNDATION
    Inventor: Karl West
  • Patent number: 10617383
    Abstract: Scanning a subject with an ultrasonic probe and obtaining an ultrasonic image of the subject. Obtaining a cross-sectional image of a cross-section of a three-dimensional image corresponding to the ultrasonic image from the three-dimensional image, the three-dimensional image including a puncture line set for a puncture needle and a superimposed columnar index having a central axis line on the puncture line and opacity which is reduced with the distance from the central axis line. Displaying the ultrasonic image and the cross-sectional image. In this case, the thickness, opacity, and cross-sectional shape of the index displayed on the cross-sectional image vary according to the positional relationship between the scan plane of the ultrasonic probe and the cross-section in which the puncture line is set.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: April 14, 2020
    Assignee: FUJIFILM Corporation
    Inventor: Jun Masumoto
  • Patent number: 10595785
    Abstract: An apparatus includes a first electromagnetic sensor configured to generate a first sensed signal based at least in part on detection of a first signal having a first wavelength. The apparatus includes a second electromagnetic sensor configured to generate a second sensed signal based at least in part on detection of a second signal having a second wavelength different from the first wavelength. The apparatus includes a processing circuit configured to generate a plethysmogram based at least in part on the first sensed signal and the second sensed signal. The apparatus may include a first emitter configured to emit an optical signal having the first wavelength. The apparatus may include a second emitter configured to emit a reference signal. The first wavelength may be a human-blood-sensitive and human-skin-penetrable wavelength and the second wavelength may be at least one of a human-blood-insensitive wavelength and a human-skin-impenetrable wavelength.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: March 24, 2020
    Assignee: Silicon Laboratories Inc.
    Inventors: Qin Wang, Yahui Zhang, David Clark, Moshe M. Altmejd
  • Patent number: 10591570
    Abstract: Wireless markers having predetermined relative positions with respect to each other are employed for motion tracking and/or correction in magnetic resonance (MR) imaging. The markers are inductively coupled to the MR receive coil(s). The correspondence between marker signals and markers can be determined by using knowledge of the marker relative positions in various ways. The marker relative positions can be known a priori, or can be obtained from a preliminary scan. This approach is applicable for imaging (both prospective and retrospective motion correction), spectroscopy, and/or intervention.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: March 17, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Melvyn B. Ooi, Julian Maclaren, Murat Aksoy, Roland Bammer, Ronald D. Watkins
  • Patent number: 10568519
    Abstract: The present disclosure relates to a terahertz imaging system for imaging a lumen of a human, such as an intravascular space. A system may include a catheter and a terahertz transceiver device coupled to the catheter. The terahertz transceiver device may be operative to output terahertz radiation through a lumen of a human and to receive reflection signals based on the terahertz radiation. A power source may be coupled to the terahertz transceiver device. The system may further include a controller in communication with the terahertz transceiver device. The controller is operative to obtain an image of the lumen based on the reflection signals.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: February 25, 2020
    Assignee: THE SPECTRANETICS CORPORATION
    Inventor: Matthew Spears
  • Patent number: 10548505
    Abstract: A magnetic resonance method and system are provided for magnetic resonance (MR) image-guided insertion of an object into a biological tissue along a predetermined trajectory. The trajectory provides a path between a starting point and a target site within the tissue. Sufficiently high resolution images can be generated in real time to precisely guide the needle placement. A compressed sensing approach is used to generate the images based on minimization of a cost function, where the cost function is based on the predetermined needle path, artifact effects associated with the needle, the negligible changes in the images away from the trajectory, and the limited differences between successive images. The improved combination of spatial and temporal resolution facilitates an insertion procedure that can be continuously adjusted to accurately follow a predetermined trajectory in the tissue, without interruptions to obtain verification images.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: February 4, 2020
    Assignees: Siemens Healthcare GmbH, The Johns Hopkins University
    Inventors: Eva Rothgang, Arne Hengerer, Lars Lauer, Jan Fritz, Paul Bottomley, Wesley David Gilson, Robert Grimm
  • Patent number: 10543382
    Abstract: A method of treating vaginal tissue atrophy in a female subject, the method including the steps of engaging an energy delivery element with tissue in or around the subject's vagina; applying energy to the tissue from the energy delivery element; and increasing blood flow to internal vaginal tissue to an increased level above a baseline level of blood flow to the internal vaginal tissue, the increased level of blood flow to the internal vaginal tissue persisting after the applying step ceases. The invention also provides devices for performing this therapy.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: January 28, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Holly Elizabeth Rockweiler, Ryan Taylor Krone, Jonathan Daniel Steinberger, Kathryn Olson
  • Patent number: 10531861
    Abstract: An ultrasound diagnosis apparatus includes an ultrasound transceiver and a controller. The ultrasound transceiver includes a changer that changes transmission direction of ultrasound waves. The ultrasound transceiver transmits ultrasound waves in a direction set while being inserted in a subject to acquire biological information of an observation site of the subject. The controller obtains a direction toward the observation site based on the biological information, and controls the changer to adjust the transmission direction of ultrasound waves to the direction thus obtained.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: January 14, 2020
    Assignee: Canon Medical Systems Corporation
    Inventor: Yasuhiko Abe
  • Patent number: 10492689
    Abstract: An optical measurement system includes a portable type optical measurement apparatus and a non-portable type optical measurement apparatus larger than the portable optical measurement apparatus. The non-portable type optical measurement apparatus is configured to be communicable to the portable type optical measurement apparatus and to be operated as a main measurement apparatus which executes measurement condition settings and measurement controls based on an input operation from the operation input section and also executes measurement condition settings and measurement controls of the non-portable type optical measurement apparatus by communication. The portable type measurement apparatus is capable of measuring a subject independently of the non-portable type measurement apparatus, and is operated as a sub-measuring apparatus for executing measurement condition settings and measurement controls in accordance with a control by the non-portable type measurement apparatus.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 3, 2019
    Assignee: Shimadzu Corporation
    Inventor: Akihiro Ishikawa
  • Patent number: 10486174
    Abstract: A computer-controlled system determines attributes of a frexel, an area of human skin, and applies an electrostatically charged modifying agent (RMA) at the pixel level, to make the skin appear more attractive. The system scans the frexel, identifies unattractive attributes, charges the RMA with an electrostatic charger, and applies the RMA, typically with an inkjet printer. The identified attributes relate to reflectance and may refer to features such as irregular-looking light and dark spots, age-spots, scars, and bruises. Identified attributes may also relate to the surface topology of the skin, for more precisely enhancing surface irregularities. Feature mapping may be used, for example to make cheeks appear pinker and cheekbones more prominent. The charged RMA can be applied in agreement with identified patterns, such as adding red to a red frexel, or in opposition, such as adding green or blue to a red frexel, according to idealized models of attractiveness.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: November 26, 2019
    Assignee: TCMS Transparent Beauty LLC
    Inventors: Albert D. Edgar, David C. Iglehart, Rick B Yeager
  • Patent number: 10470743
    Abstract: An endovascular navigation system and method are disclosed. The endovascular navigation system includes an elongate flexible member, a processor, and a display. The elongate flexible member includes an endovascular electrogram lead disposed at its distal end for sensing an endovascular electrogram signal of the venous vasculature of the patient, and a first wireless interface configured to wirelessly transmit the endovascular electrogram signal to the processor. The processor includes a second wireless interface configured to wirelessly receive the endovascular electrogram signal from the elongate flexible member. The processor is configured to determine that the position of the distal end of the elongate flexible member is within a predetermined structure within the venous vasculature of the patient. The display is configured to display a visual indication that the distal end of the elongate flexible member is within the predetermined structure.
    Type: Grant
    Filed: October 23, 2016
    Date of Patent: November 12, 2019
    Assignee: ARROW INTERNATIONAL, INC.
    Inventors: Sorin Grunwald, Fiona M. Sander, Wilfred J. Samson, Bradley Hill, E. Tina Cheng
  • Patent number: 10471205
    Abstract: A system for identifying an attribute of an implanted medical device, such as an access port. In one embodiment, the identification system comprises a marker included with the implanted medical device, the marker relating to an attribute of the implanted medical device. An external detection device is also included, comprising a signal source that emits an incident electromagnetic signal for impingement on the marker of the implanted medical device, a detector that detects a return signal from the marker resulting from impingement of the incident electromagnetic signal, and a user interface for conveying information relating to the attribute based on detection of the return signal. In the case of an implantable access port, for instance, the described system enables information, such as the ability of the port to withstand power injection of fluids therethrough, to be ascertained even after the port has been subcutaneously implanted within the patient.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: November 12, 2019
    Assignee: C. R. Bard, Inc.
    Inventors: Jiaye Z. Jho, Jeremy B. Cox
  • Patent number: 10470747
    Abstract: An ultrasonic imaging apparatus and a method for controlling the same are disclosed. The ultrasonic imaging apparatus includes: a user interface to receive an input signal of a user and a power-supply unit. The power-supply unit includes a plurality of power-supply groups to provide power-supply signals for respectively driving a plurality of elements, and a power-supply processor to search for power data corresponding to the received input signal from among predetermined power data and to adjust power-supply signals applied to respective elements corresponding to the plurality of power-supply groups according to the searched power data.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: November 12, 2019
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Chan Mo Kim, Dae Young Kim, Tae-Heon Roh