Patents Examined by Rodney Bonnette
  • Patent number: 10933984
    Abstract: Systems and methods include providing a coaxial helicopter with a main rotor system having an upper rotor system, a coaxial counter-rotating lower rotor system, and a rotor mast assembly having an upper rotor mast and a coaxial counter-rotating lower rotor mast. The upper rotor system and an associated upper vibration reduction system are coupled to the upper rotor mast. The upper vibration reduction system provides in-plane vibration control and reduction to the upper rotor system. The lower rotor system and an associated lower vibration reduction system are coupled to the lower rotor mast. The lower vibration reduction system provides in-plane vibration control and reduction to the lower rotor system. A third vibration reduction system is coupled to the rotor mast assembly and cooperates with the upper and lower vibration reduction systems to provide total in-plane vibration control and reduction to the main rotor system.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: March 2, 2021
    Assignee: Textron Innovations Inc.
    Inventors: Frank Bradley Stamps, Eric Gonzalez, Michael R. Smith
  • Patent number: 10933991
    Abstract: Propulsors, aircraft including the propulsors, and methods of directing a fluid stream in a propulsor. The propulsors include a housing defining a partially enclosed volume that extends from an inlet to both a first thrust outlet and a second thrust outlet. The propulsors also include a fan assembly including a plurality of blades and a blade pitch control mechanism that is configured to selectively vary a respective pitch angle of each blade in the plurality of blades. The fan assembly is configured to provide a motive force for fluid flow into the partially enclosed volume via the inlet. The propulsors further include an outlet flow control assembly configured to direct the fluid flow to preferentially exit the partially enclosed volume via a selected one of the first thrust outlet and the second thrust outlet. The aircraft include the propulsors. The methods include methods of operating the propulsors.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 2, 2021
    Assignee: Aurora Flight Sciences Corporation
    Inventor: Daniel B. Cottrell
  • Patent number: 10926654
    Abstract: An electric vertical take-off and landing (eVTOL) vehicle is positioned to be in a charging position on the ground, wherein the eVTOL vehicle is capable of performing vertical take-offs and landings. The battery is charged while in the charging position on the ground using a wind turbine that includes the rotor.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: February 23, 2021
    Assignee: Kitty Hawk Corporation
    Inventors: Sebastian Thrun, Benjamin Otto Berry
  • Patent number: 10926860
    Abstract: A decompression panel assembly for use in an aircraft includes a body panel having an opening defined therein and a cover panel positioned within the opening and spaced from the body panel. The decompression panel assembly also includes an annular spacer panel positioned outboard from the cover panel and the body panel. The spacer panel is spaced from the cover panel to define a first annular flow path between the cover panel and the spacer panel, and the spacer panel is spaced from the body panel to define a second annular flow path between the body panel and the spacer panel.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: February 23, 2021
    Assignee: The Boeing Company
    Inventors: Thomas Seth Perkins, Adam R. Weston
  • Patent number: 10919629
    Abstract: Disclosed herein are a vehicle system and method for VTOL. The vehicle system includes: a carrier vehicle and a cruise vehicle. The carrier vehicle includes one or more fuselages, one or more wings, one or more attach units coupled to the one or more fuselages or to the one or more wings, and propulsion systems operable to provide, at least, substantially vertical thrust and substantially horizontal thrust. The cruise vehicle includes one or more fuselages for carrying passengers or cargo and one or more wings. The one or more attach units of the carrier vehicle are adapted to couple to the cruise vehicle to detachably engage.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: February 16, 2021
    Assignee: TALYN AIR, INC.
    Inventors: James Gull, Evan Mucasey
  • Patent number: 10906629
    Abstract: A leading edge skin panel for an aerodynamic structure of an aircraft. The skin panel includes attachment components for attaching the leading edge skin panel to the structure. A primary attachment component is configured to substantially prevent spanwise relative movement between the leading edge skin panel and the structure. The remaining attachment component are configured to permit a predetermined amount of spanwise relative movement between the leading edge skin panel and the structure.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: February 2, 2021
    Assignee: Airbus Operations Limited
    Inventors: Vernon John Holmes, Rodney Evans
  • Patent number: 10906520
    Abstract: Systems and methods include providing vertical takeoff and landing (VTOL) aircraft with a cargo pod having a selectively inflatable bladder system that firmly secures a payload disposed within the cargo pod when the bladder system is pressurized. The bladder system also controls the location, position, and/or orientation of the payload in order to adjust, control, and/or maintain the center of gravity of the aircraft during flight. The aircraft includes an impact protection system that further pressurizes the bladder system to protect the payload and/or that disperses a flame-retardant fluid into the cargo pod to protect electrical components of the aircraft. The aircraft is fully autonomous and self-directed via a preprogrammed location-based guidance system to allow for accurate delivery of the payload to its intended destination. The bladder system is depressurized in response to a landing event to allow for e f the payload from the cargo pod.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: February 2, 2021
    Assignee: Textron Innovations Inc.
    Inventors: Levi Charles Hefner, John Richard McCullough
  • Patent number: 10899479
    Abstract: A controllable shape memory alloy (SMA) hinge apparatus comprises multiple SMA elements to effect a first angle of rotation and a second angle of rotation between a first object and a second object. In one example, respective SMA elements are independently activated by Joule heating to rotate the first object and/or the second object. SMA elements undergo a three-dimensional transformation, and a pair of elements may undergo antagonistic transformations so as to provide for a multiple-use bidirectional non-continuous rotary actuator. SMA elements may be trained to achieve different angles of rotations between the objects (e.g., zero degrees and 90 degrees). In some examples, the first object may be a spacecraft (e.g., a satellite) and the second object may be a deployable structure (e.g., a robotic appendage, a deployable solar panel, a deployable aperture, a deployable mirror, a deployable radiator, and at least one actuator to steer an antenna dish).
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: January 26, 2021
    Assignee: Massachusetts INSTITUTE of technology
    Inventors: Kerri Lynn Cahoy, Christian Alexander Haughwout, Derek C. Barnes, Maxim Oleg Khatsenko, James R. Clark
  • Patent number: 10899425
    Abstract: A stabilization assembly for a door frame secured to a fuselage skin of an aircraft and positioned about an opening defined in the fuselage skin including a strap, wherein a first end portion of the strap is secured to the fuselage skin with a first fastener which extends through the first end portion of the strap and through at least a portion of the fuselage skin. A second end portion of the strap is coupled to the door frame and a third portion of the strap extends between the first and second end portions of the strap and spaced apart from the fuselage skin.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: January 26, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Paul S. Nordman, Eder A. Martins, Justin David Boynton Malcolm
  • Patent number: 10889368
    Abstract: A device for managing the mechanical energy of an aircraft, having a light system, includes a support defining a guide; at least one control lever for varying the mechanical energy of the aircraft, mounted moving through the guide; and at least one position sensor detecting the position of the control lever in the guide, configured to create position information for the position of the control lever in the guide intended to be sent to a flight control unit of the aircraft. The device also includes at least one light strip extending on the support along at least part of the travel of the control lever in the guide; and a control unit of the at least one light strip, configured to display at least one light indication at least at one given point of the lighted position ramp calculated as a function of a movement context of the aircraft.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: January 12, 2021
    Assignee: DASSAULT AVIATION
    Inventor: Jérôme Le Borloch
  • Patent number: 10875648
    Abstract: A payload loading system is disclosed. The payload loading system includes a UAV and a loading structure. A retractable tether is coupled to a payload coupling apparatus at a distal end and the UAV at a proximate end. A payload is loaded to the UAV by coupling the payload to the payload coupling apparatus. The loading structure of the payload loading system includes a landing platform and a tether guide. The tether guide is coupled to the landing platform and directs the tether as the UAV approaches and travels across at least a portion of the landing platform such that the payload coupling apparatus arrives at a target location. The payload is loaded to the payload coupling apparatus while the payload coupling apparatus is within the target location.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: December 29, 2020
    Assignee: Wing Aviation LLC
    Inventors: Jim Schmalzried, Jesse Blake, André Prager, Evan Twyford
  • Patent number: 10875626
    Abstract: A foldable wing system for an unmanned aerial system having a fuselage includes a left wing frame having an inboard gear rotatably coupled to the fuselage, a right wing frame having an inboard gear rotatably coupled to the fuselage and a wing actuator coupled to a linkage point on at least one of the wing frames. The wing frames are movable between a plurality of positions including a deployed position and a stowed position. The inboard gear of the left wing frame is engaged with the inboard gear of the right wing frame such that the wing frames move symmetrically between the plurality of positions in response to movement of the linkage point by the wing actuator.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: December 29, 2020
    Assignee: Textron Innovations Inc.
    Inventors: Levi Charles Hefner, Dakota Charles Easley, Danielle Lynn Moore
  • Patent number: 10875641
    Abstract: An aerial device (100) capable of controlled flight has a body (110), a rotor (120) arranged to rotate relative to the body; and a deployable sheet (130), the sheet having an undeployed configuration in which the sheet is folded against the body and a deployed configuration in which the sheet is at least partially unfolded away from the body.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: December 29, 2020
    Assignee: Imperial College of Science, Technology and Medicine
    Inventors: Mirko Kovac, Pooya Sareh
  • Patent number: 10870558
    Abstract: Load control apparatuses, systems and methods to control a location, orientation, or rotation of a suspended load by imparting thrust vectors to the suspended load or to a structure that holds the load. The load control apparatuses, systems and method may be integrated into a structure that holds a load, such as a rescue litter. The load control apparatuses, systems, and methods may be modular. The modular load control apparatuses, systems, and methods may be secured to a load or to a structure that holds the load.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: December 22, 2020
    Assignee: Vita Inclinata Technologies, Inc.
    Inventors: Derek Sikora, Caleb B. Carr, Adam L. K. Philipp
  • Patent number: 10864983
    Abstract: An aircraft (1) having a wing (3) and a wing tip device (4) at the tip of the wing (3), wherein the wing tip device (4) includes a rib (16) positioned in a span wise region (C) of the wing tip device (4) in which transonic flow occurs when the aircraft (1) is in flight. A method of designing an aircraft (1) including predicting where transonic flow occurs on the wing tip device (4) when the aircraft (1) is in flight, and designing the wing tip device (4) with a rib (16) positioned in the span wise region (C) of the wing tip device (4) in which the predicted transonic flow occurs.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: December 15, 2020
    Assignee: Airbus Operations Limited
    Inventors: Richard Hewson, William Tulloch
  • Patent number: 10858099
    Abstract: This invention relates to the use of a retracting hand launching and landing pole for drones having small or short landing legs that are difficult to grasp when hand launching and landing in windy conditions and on moving platforms or irregular ground, and will not interfere with normal flat surface landings.
    Type: Grant
    Filed: July 14, 2018
    Date of Patent: December 8, 2020
    Inventor: Helmuth G. Bachmann
  • Patent number: 10858089
    Abstract: A chine spoiler system enhances aircraft wing stall recovery characteristics while optimizing a maximum lift coefficient (CLMAX) of an aft-swept wing on an aircraft having an engine nacelle mounted below the wing. The system includes a chine located on a surface of the nacelle; the chine is configured to generate a vortex at high angles of attack. The vortex passes over an upper surface of the wing, favorably influencing inboard wing aerodynamics to delay airflow separation from the wing, in advance of a stall. The vortex increases CLMAX, but also creates a nose-up pitching moment on an aft-swept wing, which degrades stall recovery. A chine spoiler system module is configured to render the chine ineffective at predetermined wing flap configurations and angles of attack (typically post CLMAX) to balance the objectives of achieving high pre-stall CLMAX, while providing a nose-down pitching moment increment for improved stall recovery.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: December 8, 2020
    Assignee: The Boeing Company
    Inventor: C. Byram Bays-Muchmore
  • Patent number: 10858115
    Abstract: An assembly for an aircraft having a propeller, including a wheel well for a retracted landing gear, first and second cooling ducts; and an engine assembly having an engine shaft configured for driving engagement with the propeller, the engine assembly including a coolant circulation system for circulation of a liquid coolant, a lubricant circulation system for circulation of a lubricant, a first heat exchanger in fluid communication with at least the coolant circulation system, and a second heat exchanger in fluid communication with at least the lubricant circulation system. Each heat exchanger is positioned and configured for receiving a cooling airflow from the respective cooling duct. The wheel well is located between the heat exchangers. A method of cooling a lubricant and a liquid coolant of an engine assembly is also discussed.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: December 8, 2020
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Luc Dionne, Bruno Villeneuve, Jean Thomassin
  • Patent number: 10850829
    Abstract: A flap deployment apparatus and system for a wing of an aircraft that includes a support structure having a first aerodynamic surface. A nose fitting secures the support structure to a forward portion of an aircraft wing and an aft fitting secures the support structure to an aft portion of the wing. A carrier beam having a second aerodynamic surface is coupled to the support structure. The carrier beam is movable between a stowed position and a deployed position. Links guide the carrier between the positions. The first and second aerodynamic surfaces are configured to define a continuous aerodynamic surface when the carrier beam is in the stowed position. The apparatus includes a nose fairing having a third aerodynamic and a mid fairing cover having a fourth aerodynamic surface. The third and fourth aerodynamic surfaces also defines the continuous aerodynamic surface when the carrier beam is in the stowed position.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: December 1, 2020
    Assignee: THE BOEING COMPANY
    Inventor: Bryan Jacob Gruner
  • Patent number: 10851896
    Abstract: Systems and methods include providing an aircraft with a fuselage and a wing assembly rotatable relative to the fuselage about a stow axis between a flight position and a stowed position. The aircraft includes a drive component having a retractable driveshaft that selectively engages the mid-wing gearbox via axially translatable motion along a rotation axis when the wing assembly is in the flight position. The mid-wing gearbox is misaligned with the retractable driveshaft when the wing assembly is in the stowed position. A seal is coupled to the drive component at a first end and the mid-wing gearbox at a second end and deploys in order to maintain a sealed connection between the drive component and the mid-wing gearbox when the wing assembly is transitioned between the flight position and the stowed position.
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: December 1, 2020
    Assignee: Textron Innovations Inc.
    Inventor: Colton Gilliland