Abstract: A flame or heat flux protective coating composition, which includes a dispersion of fiberglass, hollow glass spheres, or a combination of both in silicone. A flame or heat flux protective sheet, which includes hollow glass spheres dispersed in silicone in a sheet form or fiberglass and silicone in a sheet form, wherein the fiberglass is dispersed in the silicone or the fiberglass is a woven cloth coated with the silicone is also presented. Articles incorporating the flame or heat flux protective coating or sheet form and methods for coating an article with the flame or heat flux protective coating composition are also presented.
Type:
Grant
Filed:
May 30, 2019
Date of Patent:
November 29, 2022
Assignee:
RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
Inventors:
Thomas J. Nosker, Jennifer K. Lynch-Branzoi, Mark Mazar, Patrick L. Nosker
Abstract: Pitch granules including a core made up of a first composition including at least one pitch, the composition having a penetrability at 25° C. of 0 to 45 1/10 mm, a ring-and-ball softening temperature (TBA) of 55° C. to 175° C., understanding the penetrability as measured according to standard EN 1426 and the TBA as measured according to standard EN 1427, and a layer encapsulating at least one portion of the surface of the core, the layer being made up of a coating composition including at least one anti-caking agent.
Abstract: The disclosure relates to sintered ceramic grains comprising 3-55 wt. % alumina, 40-95 wt. % zirconia and 1-30 wt. % of one or more other inorganic components. The invention further relates to a method for preparing ceramic grains according to the invention, comprising: making a slurry comprising alumina, zirconia; making droplets of the slurry; introducing the droplets in a liquid gelling-reaction medium wherein the droplets are gellified; drying the gellified deformed droplets.
Abstract: Compositions having solid core particles with functionalizing layers over at least a portion of the outer surfaces of the solid core particles are described. The functionalizing layers are formed from a reaction product of a 1,1-di-activated vinyl compound, or a multifunctional form thereof, or a combination thereof.
Type:
Grant
Filed:
July 26, 2017
Date of Patent:
October 11, 2022
Assignee:
PPG Industries Ohio, Inc.
Inventors:
Michael A. Zalich, Aditya Gottumukkala, Kurt G. Olson
Abstract: A resin powder contains a resin contains columnar particles, wherein the proportion of the columnar particles having a ratio (L/W) of less than 1 is 50 percent by volume or more in the total volume of the resin powder, where W represents the width in the radial direction of the columnar particles and L represents the length in the axis direction of the columnar particles.
Abstract: Provided is a silicon bulk thermoelectric conversion material in which thermoelectric performance is improved by reducing the thermal conductivity as compared with the prior art. In the silicon bulk thermoelectric conversion material, the ZT is greater than 0.2 at room temperature with the elemental silicon. In the silicon bulk thermoelectric conversion material, a plurality of silicon grains have an average of 1 nm or more and 300 nm or less, a first hole have an average of 1 nm or more and 30 nm or less present in the plurality of silicon grains and surfaces of the silicon grains, and a second hole have an average of 100 nm or more and 300 nm or less present between the plurality of silicon grains, wherein the aspect ratio of a crystalline silicon grain is less than 10.
Abstract: An insulator-coated soft magnetic powder includes core particles each of which includes a base portion containing a soft magnetic material and an oxide film provided on the surface of the base portion and containing an oxide of an element contained in the soft magnetic material, ceramic particles which are provided on the surface of each of the core particles and have an insulating property, and a glass material which is provided on the surface of each of the core particles, has an insulating property, and contains at least one type of phosphorus oxide, bismuth oxide, zinc oxide, boron oxide, tellurium oxide, and silicon oxide as a main component, wherein the ceramic particles are included in a proportion of 100 vol % or more and 500 vol % or less of the glass material.
Abstract: A high-density polyethylene composition that is formulated for being injection molded into an injection-molded bottle cap closure comprising a skirt that axially extends from the periphery of a base, and internal screw threads for securing the cap to a container, and method of producing the same.
Type:
Grant
Filed:
October 15, 2020
Date of Patent:
September 20, 2022
Assignee:
Dow Global Technologies LLC
Inventors:
William J. Michie, Jr., Stephanie M. Whited, Nathan J. Wiker, Dale M. Elley-Bristow
Abstract: Provided is polymer particle comprising (a) 40% to 85% by weight, based on the dry weight of the polymer particle, a core polymer having Tg of ?35° C. or lower; (b) 15% to 50% by weight, based on the dry weight of the polymer particle, an intermediate polymer having Tg that is 20° C. or lower and that is higher than the Tg of the core polymer by 10° C. or more; (c) 5% to 30% by weight, based on the dry weight of the polymer particle, a shell polymer having Tg of 50° C. or higher; wherein the shell polymer comprises polymerized units of all vinyl aromatic monomers in an amount of 1% or less, by weight based on the weight of the shell polymer.
Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.
Type:
Grant
Filed:
November 9, 2017
Date of Patent:
September 6, 2022
Assignee:
The United States of America as represented by the Secretary of the Army
Inventors:
John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
Abstract: The present disclosure relates to roofing granules, such as solar-reflective roofing granules having one or more of low crystalline silica content, high stain resistance and algae resistance. The present disclosure provides a mineral roofing granule having at its mineral outer surface a first fired mixture comprising an aluminosilicate clay, the first fired material having no more than 2 wt % crystalline silica. The present disclosure also provides a mineral roofing granule having a mineral body and a mineral outer surface, the mineral roofing granule having at its mineral outer surface a first fired material, the first fired material being a first fired mixture comprising an aluminosilicate clay; one or more of a feldspar, a sodium silicate and a nepheline syenite; and, optionally, a zinc source.
Type:
Grant
Filed:
December 29, 2017
Date of Patent:
August 30, 2022
Assignee:
CertainTeed LLC
Inventors:
Bojana Lante, Tracy Panzarella, Rachel Z. Pytel
Abstract: Provided is a two-stage curable laminate characterized in that a layer containing a high-hardness resin (B) is disposed on at least one surface of a resin layer (A) containing a polycarbonate resin (a1), a coating layer (Z) is disposed on the layer containing the high-hardness resin (B), and conditions (i) to (iii) above are satisfied.
Type:
Grant
Filed:
August 17, 2017
Date of Patent:
August 23, 2022
Assignees:
MITSUBISHI GAS CHEMICAL COMPANY, INC., MGC FILSHEET CO., LTD.
Inventors:
Atsuhiro Tokita, Shigeki Tahara, Masato Takasaki, Kishin Ozawa
Abstract: A granule and building material including a granule having an inner zone and an outer zone that at least partially surrounds the inner zone and that comprises greater than 10% of the total volume of the granule is provided.
Type:
Grant
Filed:
September 11, 2013
Date of Patent:
August 16, 2022
Assignee:
3M INNOVATIVE PROPERTIES COMPANY
Inventors:
Kenton D. Budd, Robert P. Brown, Rebecca L. Everman, Craig W. Lindsay, Jean A. Tangeman
Abstract: A coating material containing an oxyfluoride of yttrium and having a Fisher diameter of 1.0 to 10 ?m and a tap density TD to apparent density AD ratio, TD/AD, of 1.6 to 3.5. The coating material preferably has a pore volume of pores with a diameter of 100 ?m or smaller of 1.0 cm3/g or less as measured by mercury intrusion porosimetry. A coating containing an oxyfluoride of yttrium and having a Vickers hardness of 200 HV0.01 or higher. The coating preferably has a fracture toughness of 1.0×102 Pa·m1/2 or higher.
Abstract: The present invention provides alumina particles having a fixed card-house structure formed of three or more flat plate-like alumina particles and having an average particle diameter of 3 to 1000 ?m. Also, there is provided alumina particles having an average particle diameter of 3 to 1000 ?m and having a fixed card-house structure in which the three or more flat plate-like alumina are aggregated to be crossed each other at two or more plurality of positions, and the plane directions of the flat plates crossed each other are in a state of disordered arrangement.
Abstract: Provided is a thermal spraying material capable of forming a thermally sprayed coating film having improved plasma erosion resistance. The invention disclosed here provides a thermal spraying material. This thermal spraying material comprises composite particles in which a plurality of yttrium fluoride microparticles are integrated. In addition, the compressive strength of the composite particles is 5 MPa or more.
Abstract: Provided is an iron oxide powder for a brake friction material which can be suitably used in a brake friction material that is less likely to cause problems regarding brake squealing and that provides superior braking performance. The iron oxide powder for a brake friction material according to a first embodiment of the present invention is characterized by having a sulfur content of 150 ppm or less as measured by combustion ion chromatography, and a saturation magnetization of 20 emu/g or less. The iron oxide powder for a brake friction material according to a second embodiment of the present invention is characterized by having an average particle size of 1.0 ?m or more, a chlorine content of 150 ppm or less as measured by combustion ion chromatography, and a saturation magnetization of 20 emu/g or less.
Abstract: The present invention relates to an aluminum powder coated with a fluorine-based hydrocarbon polymer layer, and a preparation method therefor. According to the present invention, the aluminum powder coated with a fluorine-based hydrocarbon polymer layer and a preparation method therefor enable the preparation of an aluminum powder coated with a fluorine-based hydrocarbon polymer layer, in which an additional oxidation reaction of the aluminum powder is achieved and fuel performance as a solid fuel is improved, by coating the fluorine-based hydrocarbon polymer layer on the surface of the powder.
Abstract: A process for the conversion of hardwood and bamboo to engineered carbon is disclosed. The biomass feedstock of hardwood and bamboo is placed into a holding canister, and the holding canister is lowered into the sealable reactor vessel. The biomass feedstock is ignited, and superheated stream and/or water is metered, or alternately steam is created in situ by introduction of water, into the process. The process is controlled by supplying compressed air and steam, or in situ water, and releasing process gases. The process is performed in an oxygen deprived state. Steam, or in situ water, is injected at the end of the cycle to end the thermal conversion and clean the resulting engineered carbon.
Abstract: The present invention relates to a pigmented matte coating composition comprising an aqueous dispersion of a) phosphorus acid functionalized polymer particles; b) TiO2 particles; c) polymeric organic microspheres; and d) a rheology modifier. The composition of the present invention gives matte finish coatings having the stain and scrub resistant attributes similar to coatings formed from semi-gloss paint compositions.
Type:
Grant
Filed:
December 10, 2018
Date of Patent:
April 26, 2022
Assignees:
Rohm and Haas Company, Dow Global Technologies, LLC.
Inventors:
James C. Bohling, Ibrahim Eryazici, Philip R. Harsh, Partha S. Majumdar, Edwin Aloysius Nungesser, Jr., Qing Zhang