Patents Examined by Ronnie M Mancho
  • Patent number: 11597526
    Abstract: A control system for a hybrid electric powerplant of an aircraft can include a master controller configured to receive one or more power settings and to output a heat engine setting and an electric motor setting and a heat engine controller operatively connected to the master controller. The heat engine controller can be configured to receive the heat engine setting and to control a heat engine system as a function of the heat engine setting to control torque output by a heat engine. The system can include an electric motor controller operatively connected to the master controller. The electric motor controller configured to receive the electric motor engine setting and to control an electric motor system as a function of the electric motor setting to control torque output by an electric motor.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: March 7, 2023
    Inventors: Michael Mark, Richard Ullyott, Manuel Acuna, Joseph Kehoe
  • Patent number: 11597086
    Abstract: A problem with current food service robots is making the robots safe to work around food. A solution provided by the present disclosure is a food-safe tool switcher and corresponding tool. The tool switcher can mate with a variety of tools, which can be molded or 3D printed out of food-safe materials into a single-part, instead of constructed modularly. This provides for easier cleaning.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: March 7, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: David M. S. Johnson, Justin Rooney, Cody Chu, Luis Trueba
  • Patent number: 11594044
    Abstract: Aspects of the disclosure provide for a method for identifying speed limit signs and controlling an autonomous vehicle in response to detected speed limit signs. The autonomous vehicle's computing devices identifies a speed limit sign in a vehicle's environment and a location and orientation corresponding to the speed limit sign. Then, the and orientation location of the speed limit sign is determined to not correspond to a pre-stored location and a pre-stored orientation of a speed limit sign that is pre-stored in map information. An effect zone of the speed limit sign is determined based on the location and orientation of the speed limit sign and characteristics of surrounding areas or other detected object before or after the speed limit sign. The autonomous vehicle's computing devices determines a response of the vehicle based on the determined effect zone, and controls the autonomous vehicle based on the determined response.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: February 28, 2023
    Assignee: Waymo LLC
    Inventors: David Harrison Silver, Pankaj Chaudhari, Carl Kershaw
  • Patent number: 11584025
    Abstract: An automated transforming tooling system apparatus and method for shuttling a workpiece to and from an industrial operation. The system includes a workstation for complementarily engaging and securing the workpiece, and at least one holder removably secures at least on end effector tool to the workstation. At least one transfer bar is movably positioned with respect to the workstation. At least one automated transforming tooling assembly is connected to the transfer bar and has a plurality of links adjustably connected by motorized joints to automatically position the automated transforming tooling assembly. An automated tool changer is connected to the automated transforming tooling assembly and releasably engages the end effector tool between a disengaged position, wherein the end effector tool is disengaged from the automated tool changer, and an engaged position, wherein the end effector tool is engaged by the automated tool changer.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: February 21, 2023
    Assignee: Norgren Automation Solutions, LLC
    Inventors: Michael A. Filipiak, Richard Hamann, Daniel Kersey, Vincent C. Rabaut, III, Edwin E. Marttinen
  • Patent number: 11583997
    Abstract: A robot in a location interacts with a user. The robot includes a camera, an image recognition processor, a microphone and a loudspeaker, a voice assistant, and a wireless transceiver. The robot moves around and creates a model of the location, and recognizes changes. It recognizes objects of interest, beings, and situations. The robot monitors the user and recognizes body language and gesture commands, as well as voice commands. The robot communicates with the user, the TV, and other devices. It may include environment sensors and health status sensors. It acts as a user companion by answering queries, executing commands, and issuing reminders. It may monitor to determine if the user is well. The robot may monitor objects of interest, their placement and their status. When necessary, it communicates with the user.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: February 21, 2023
    Assignee: Sony Group Corporation
    Inventors: David Young, Lindsay Miller, Lobrenzo Wingo, Marvin DeMerchant
  • Patent number: 11576737
    Abstract: Integrated table motion includes a device including a control unit and an arm having one or more joints and a distal portion. The control unit is configured to receive a table movement request from a separate table, determine whether to allow the table movement request based on one or more of whether a type of movement in the table movement request is permitted, whether one or more instruments mounted to the device are within a field of view of an imaging device, or whether one or more instruments mounted to the device are withdrawn into respective cannulas, allow the table to perform the table movement request based on the determining; track movement of the table while the table performs the table movement request; and maintain, using the joint(s) and based on the tracked movement of the table, a position and/or an orientation of the distal portion relative to the table.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: February 14, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Paul G. Griffiths, Jason Hemphill, Goran A. Lynch, Daniel N. Miller, Patrick O'Grady, Nitish Swarup, Kamyar Ziaei
  • Patent number: 11568689
    Abstract: The present disclosure provides systems and methods to obtain feedback descriptive of autonomous vehicle failures. In particular, the systems and methods of the present disclosure can detect that a vehicle failure event occurred at an autonomous vehicle and, in response, provide an interactive user interface that enables a human located within the autonomous vehicle to enter feedback that describes the vehicle failure event. Thus, the systems and methods of the present disclosure can actively prompt and/or enable entry of feedback in response to a particular instance of a vehicle failure event, thereby enabling improved and streamlined collection of information about autonomous vehicle failures.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: January 31, 2023
    Assignee: UATC, LLC
    Inventors: Molly Castle Nix, Sean Chin, Dennis Zhao
  • Patent number: 11565409
    Abstract: A robot programming system according to an aspect of the present disclosure includes: a robot program storage section; a press program storage section; a template program setting section that causes the robot program storage section to store, as an initial version of a robot program, a template program that instructs a robot how to move basically; a model placing section that places three-dimensional models of a workpiece, the robot, and a press machine in a virtual space; a robot movement processing section that causes the three-dimensional model of the robot to move; a press movement processing section that causes the three-dimensional model of the press machine to move; an interference detection section that detects interference between the three-dimensional models; and a robot program modification section that modifies a robot program stored in the robot program storage section to prevent interference detected by the interference detection section.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: January 31, 2023
    Assignee: FANUC CORPORATION
    Inventor: Hiroyuki Yoneyama
  • Patent number: 11559905
    Abstract: A subsea manipulator for a remotely operated underwater vehicle (ROV) that includes at least one linear, oil-filled electric actuator to control a motion of the manipulator in a subsea environment is disclosed. The remotely operated underwater manipulator includes an electric actuator for each axis of motion of the manipulator, and an end effector that includes a rotational joint and a tool motor for controlling a tool affixed to the end effector. A method for changing the tool of the manipulator in a subsea environment is disclosed.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: January 24, 2023
    Assignee: Nauticus Robotics Holdings, Inc.
    Inventors: Adam Parsons, Nicolaus Radford, Sean Halpin, Kris Verdeyen
  • Patent number: 11559864
    Abstract: A tool changer device for a robotic arm comprising a robot adapter (1) particularly adapted to be connected to a robotic arm (5) and to a tool (6). The robot adapter (1) comprises a pneumatic cylinder (117) inside which a piston (116) is slidably arranged for activating a coupling and uncoupling mechanism (120) of the robotic arm (5) to the tool (6). On one of the walls of the robot adapter (1) at least four through conduits (24, 25, 26, 27) are arranged, one end of which opens into the pneumatic cylinder (117) and another end of which opens outside of the pneumatic cylinder (117). The device further comprises a first differential pressure sensor (18) connected to at least two of the through conduits (24, 25), and a second differential pressure sensor (19) connected to another two of the through conduits (26, 27).
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: January 24, 2023
    Assignee: EFFECTO GROUP S.P.A.
    Inventors: Giovanni Patrini, Stefan Casey
  • Patent number: 11556123
    Abstract: An unmanned aerial vehicle (UAV) carries a camera, sends data from the camera, and receives commands. The UAV is connected to a messaging platform. Pictures or video clips received from the UAV are selected and placed in messages broadcast by an account associated with the UAV. Video footage from the camera is live-streamed in a card-type message. Account holders of the messaging platform may control the UAV with commands embedded in messages and directed towards an account associated with the UAV. Controllable elements of the UAV include UAV location, camera orientation, camera subject, UAV-mounted lighting, a UAV-mounted display, a UAV-mounted projector, UAV-mounted speakers, and a detachable payload. UAV control may be determined through democratic means. Some UAV functionality may be triggered through aggregated engagements on the messaging platform. The UAV may include a display screen and/or a microphone to provide for telepresence or interview functionality.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: January 17, 2023
    Assignee: Twitter, Inc.
    Inventors: Ya-Ting Wang, Wayne Robins
  • Patent number: 11548161
    Abstract: Methods of performing a plurality of operations within a region of a part utilizing an end effector of a robot and robots that perform the methods are disclosed herein. The methods include collecting a spatial representation of the part and aligning a predetermined raster scan pattern for movement of the end effector relative to the part with the spatial representation of the part. The methods also include defining a plurality of normality vectors for the part at a plurality of predetermined operation locations for operation of the end effector. The methods further include moving the end effector relative to the part and along the predetermined raster scan pattern. The methods also include orienting the end effector such that an operation device of the end effector faces toward each operation location along a corresponding normality vector and executing a corresponding operation of the plurality of operations with the operation device.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: January 10, 2023
    Assignee: The Boeing Company
    Inventors: Barry Allen Fetzer, Jeong-Beom Ihn, Gary E. Georgeson, Jill Paisley Bingham
  • Patent number: 11548145
    Abstract: Deep machine learning methods and apparatus related to manipulation of an object by an end effector of a robot. Some implementations relate to training a deep neural network to predict a measure that candidate motion data for an end effector of a robot will result in a successful grasp of one or more objects by the end effector. Some implementations are directed to utilization of the trained deep neural network to servo a grasping end effector of a robot to achieve a successful grasp of an object by the grasping end effector. For example, the trained deep neural network may be utilized in the iterative updating of motion control commands for one or more actuators of a robot that control the pose of a grasping end effector of the robot, and to determine when to generate grasping control commands to effectuate an attempted grasp by the grasping end effector.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: January 10, 2023
    Assignee: GOOGLE LLC
    Inventors: Sergey Levine, Peter Pastor Sampedro, Alex Krizhevsky
  • Patent number: 11548151
    Abstract: A method for negotiating stairs includes receiving image data about a robot maneuvering in an environment with stairs. Here, the robot includes two or more legs. Prior to the robot traversing the stairs, for each stair, the method further includes determining a corresponding step region based on the received image data. The step region identifies a safe placement area on a corresponding stair for a distal end of a corresponding swing leg of the robot. Also prior to the robot traversing the stairs, the method includes shifting a weight distribution of the robot towards a front portion of the robot. When the robot traverses the stairs, the method further includes, for each stair, moving the distal end of the corresponding swing leg of the robot to a target step location where the target step location is within the corresponding step region of the stair.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: January 10, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Eric Whitman, Gina Christine Fay, Benjamin Swilling
  • Patent number: 11548662
    Abstract: A method, apparatus, and system for managing sensor system for an aircraft. A presence of erroneous sensor data generated by a set of external sensors on an exterior of the aircraft is detected. A set of deployable sensors is deployed in response to the erroneous sensor data being received from the set of external sensors on the exterior of the aircraft when an undesired environmental condition adverse to the set of external sensors on the exterior of the aircraft is absent. Sensor data is received from the set of deployable sensors.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: January 10, 2023
    Assignee: The Boeing Company
    Inventor: Alessandro E. Galli
  • Patent number: 11547486
    Abstract: Computer-implemented digital image analysis methods, apparatuses, and systems for robotic installation of surgical implants are disclosed. A disclosed apparatus plans a route within an anatomy of a patient from an incision site to a surgical implant site for robotic installation of a surgical implant. The apparatus uses digital imaging data to identify less-invasive installation paths and determine the dimensions of the surgical implant components being used. The apparatus segments the surgical implant into surgical implant subcomponents and modifies the surgical implant subcomponents, such that they can be inserted using the identified less-invasive installation paths.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: January 10, 2023
    Assignee: IX Innovation LLC
    Inventors: Jeffrey Roh, Justin Esterberg, John Cronin, Seth Cronin, Michael John Baker
  • Patent number: 11541547
    Abstract: A vacuum operated object lifting system is disclosed that can use air pressure differentials to anchor the lifting system to the floor or other structure. The vacuum lifting system includes a main structure having a space defined in the bottom thereof and a lifting arm system extending from the main structure for grasping and moving a load. The vacuum lifting system includes a vacuum pumping system including an air pump and a conduit system extending from the air pump to the space in the bottom of the main structure. Use of the air pump to draw air out of the conduit system creates pressure differential between ambient air pressure and air pressure in the space of the main structure to anchor the vacuum lifting system to the ground. The vacuum pumping system may also grasp the load by suction.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: January 3, 2023
    Inventor: Darren Wayde Lawson
  • Patent number: 11543798
    Abstract: Control systems for industrial machinery (e.g., robots) or other devices such as medical devices utilize a safety processor (SP) designed for integration into safety applications and computational components that are not necessarily safety-rated. The SP monitors performance of the non-safety computational components, including latency checks and verification of identical outputs. One or more sensors send data to the non-safety computational components for sophisticated processing and analysis that the SP cannot not perform, but the results of this processing are sent to the SP, which then generates safety-rated signals to the machinery or device being controlled by the SP. As a result, the system may qualify for a safety rating despite the ability to perform complex operations beyond the scope of safety-rated components.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: January 3, 2023
    Assignee: VEO ROBOTICS, INC.
    Inventors: Scott Denenberg, Clara Vu, Patrick Sobalvarro, Lev Persits, Ilya A. Kriveshko, Elliot Simon, Alberto Moel, Patrick J. Foy, Justin Bronder
  • Patent number: 11543792
    Abstract: Some aspects include a schedule development method for a robotic floor-cleaning device that recognizes patterns in user input to automatically devise a work schedule.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: January 3, 2023
    Assignee: AI Incorporated
    Inventor: Ali Ebrahimi Afrouzi
  • Patent number: 11536547
    Abstract: The present disclosure is directed to mobile correctional facility robots and systems and methods for coordinating mobile correctional facility robots to perform various tasks in a correctional facility. The mobile correctional facility robots can be used to perform many of the tasks traditionally assigned to correctional facility guards to help reduce the number of guards needed in any given correctional facility. When cooperation is employed among multiple mobile correctional facility robots to execute tasks, a central controller can be used to coordinate the efforts of the multiple robots to improve the performance of the overall system of robots as compared to the performance of the robots when working in uncoordinated effort to execute the tasks.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: December 27, 2022
    Assignee: Global Tel*Link Corporation
    Inventor: Stephen Hodge