Patents Examined by Ryan Lepisto
  • Patent number: 10197751
    Abstract: A coaxial transmitter optical subassembly (TOSA) including a ball lens may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The coaxial TOSA includes a laser package with a ball lens holder section defining a lens holder cavity that receives the ball lens. The lens holder cavity is dimensioned such that the ball lens is positioned in substantial alignment with the laser diode for optically coupling a laser output from the laser diode into an optical waveguide at an optical coupling end of the TOSA. The coaxial TOSA is thus configured to allow the less expensive ball lens to be used in a relatively small package when a lower coupling efficiency and power is desired and without substantial redesign of the TOSA.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: February 5, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Jianhong Luo, Che-Shou Yeh, I-Lung Ho, Peng Nie
  • Patent number: 10197735
    Abstract: An apparatus for coupling an optical fiber embedded within a member to a waveguide is disclosed. The embedded optical fiber has a core and a cladding surrounding the core. A block includes an engagement surface for positioning adjacent the member to facilitate removal of a portion of the cladding surrounding the core of the embedded optical fiber, a monitoring region adjacent which a portion of a waveguide is positioned, and a waveguide having a first section positioned at the monitoring region and a second section configured to be connected to an optical measuring element for measuring a transmission through passing through the waveguide.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: February 5, 2019
    Assignee: Molex, LLC
    Inventor: Malcolm H. Hodge
  • Patent number: 10191222
    Abstract: An optical connector apparatus includes a connector which is connected to an electro-optical composite cable including an optical fiber and a metal conductor, and a connection object to be connected. The connector is provided with a ferrule which has a conductive portion on at least a part of the surface thereof. The connection object to be connected is provided with an electrically conductive connection member to be connected to the ferrule. The ferrule and the cable are connected by a crimping structure. When the ferrule is inserted in the connection member, the connector and the connection object to be connected are electrically and optically connected to each other.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: January 29, 2019
    Assignee: JAPAN AVIATION ELECTRONICS, INDUSTRY, LIMITED
    Inventor: Osamu Hashiguchi
  • Patent number: 10191213
    Abstract: Methods and structures for shielding optical waveguides are provided. A method includes forming a first optical waveguide core and forming a second optical waveguide core adjacent to the first optical waveguide core. The method also includes forming an insulator layer over the first optical waveguide core and the second optical waveguide core. The method further includes forming a shielding structure in the insulator layer between the first optical waveguide core and the second optical waveguide core.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: January 29, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 10191234
    Abstract: A method of aligning an optical fiber with an optical component in a micro-optical sub-assembly, comprises: providing a groove in the micro-sub-assembly in alignment with the optical component; and placing the optical fiber in the groove, thereby aligning the optical fiber with the optical component. In this way a placement tool with an accuracy of 50 microns can be used to place an optical fiber with an alignment accuracy of one micron.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: January 29, 2019
    Assignee: OTX Ltd.
    Inventor: Eli Benoliel
  • Patent number: 10185102
    Abstract: An optical connector having at least one removable integrated assembly tool for terminating an optical fiber cable is described. The connector comprises a housing configured to mate with a receptacle, a collar body disposed in the housing, a backbone that retains the collar body in the housing, a removable funnel-shaped and a fiber boot. The collar body secures a ferrule secured at a first end thereof, and includes mechanical element disposed in an intermediate portion and a buffer clamping portion near a second end of the collar body. The backbone has a mounting structure surrounding a central bore at one end. The funnel-shaped fiber guide attaches to the mounting structure to facilitate insertion of an optical fiber into the connector, and wherein the fiber boot is attachable to the mounting structure after the fiber guide has been removed.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: January 22, 2019
    Assignee: Corning Research & Development Corporation
    Inventors: Joseph C. Sawicki, Donald K. Larson, Michael May, Takaya Yamauchi
  • Patent number: 10185089
    Abstract: A method for splicing a first optical fiber ribbon cable to a second optical fiber ribbon cable includes separating an end of the first optical fiber ribbon cable into loose optical fibers, and re-ribbonizing the loose optical fibers into a ribbonized end having a second pitch different from the first pitch of the original first optical fiber ribbon cable. The method further includes inserting the ribbonized end into a mass fusion splicer having the second pitch, and splicing the ribbonized end to the end of the second optical fiber ribbon cable using the mass fusion splicer.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: January 22, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Denis E Burek, Yue Liang, Heng Ly
  • Patent number: 10180523
    Abstract: An optical coupling device can couple incident light, propagating orthogonal to a layered structure, into a layer of the layered structure. The device can include a lens having a lens central axis. The lens can focus a first beam to form a converging second beam. The first beam can have a first beam central axis that is offset from the lens central axis. The second beam can have a second beam central axis that is angled with respect to the first beam central axis. A planar grating can redirect the second beam to form a converging third beam. The third beam can have a third beam central axis that is parallel to a plane of the grating. Offsetting the first beam central axis from the lens central axis in this manner can help relax wavelength, manufacturing, and/or alignment tolerances, compared to a configuration in which there is no offset.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: January 15, 2019
    Assignee: Juniper Networks, Inc.
    Inventor: Brian Koch
  • Patent number: 10180541
    Abstract: A fiber optic connector is disclosed that includes a plug body having a plug end and a connector core that mounts within the plug body. The connector core includes a ferrule subassembly including a ferrule, a ferrule hub that attaches to the ferrule, a spring holder and a connector spring. The ferrule sub-assembly is assembled with the connector spring pre-compressed to an initial compressed state prior to mounting the connector core within the connector body. The plug body and the core are configured such that the connector spring is moved from the initial compressed state to a final compressed state when the connector core is loaded in the plug body. In certain examples, tuning features can be integrated into the connector core.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: January 15, 2019
    Assignees: COMMSCOPE CONNECTIVITY BELGIUM BVBA, COMMSCOPE ASIA HOLDINGS B.V., ADC TELECOMMUNICATIONS (SHANGHAI) DISTRIBUTION CO., LTD.
    Inventors: Philippe Coenegracht, Jianfeng Jin, Liming Wang, Jacob Arie Elenbaas
  • Patent number: 10175435
    Abstract: A laser delivery device may include a connector portion at a proximal end of the laser delivery device and an optical fiber connecting the connector portion to a distal end of the laser delivery device. The connector portion may include a capillary at least partially surrounding a proximal portion of the optical fiber, and the capillary may include dimples on at least a portion of a circumferential surface thereof.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: January 8, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Steven Yihlih Peng, Wen-Jui Ray Chia, Thomas Charles Hasenberg
  • Patent number: 10175426
    Abstract: An adapter is cylindrical and includes a first groove and a locking structure. The first groove is adjacent to an inner peripheral surface at one end of the adapter. The first groove extends in an axial direction of the adapter and turns in a circumferential direction. The locking structure is disposed in a circumferential direction at an outer peripheral surface at other end of the adapter. An optical plug includes an elastic member and a stopper. The elastic member is at a rear end of a holder. The stopper includes an annular portion that is in contact with the elastic member and arm portions bent toward the front end from an outer periphery of the annular portion. Each of the arm portions includes a hook at a front end of the stopper. The hook is configured to be locked into the adapter. The optical plug is attached via the adapter.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 8, 2019
    Assignee: Kyocera Corporation
    Inventor: Michifumi Shouda
  • Patent number: 10162108
    Abstract: An optical fiber includes an optical transmission medium having a core and a cladding, a primary resin layer disposed in contact with the optical transmission medium to coat the optical transmission medium, and a secondary resin layer coating the primary resin layer, wherein a Young's modulus of the primary resin layer is 0.5 MPa or less at 23° C., and the primary resin layer comprises a cured product of an ultraviolet light curable resin composition containing a urethane (meth)acrylate oligomer, a monomer, a photopolymerization initiator and a ?-diketone compound, and tin.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: December 25, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yuya Homma, Kazuyuki Sohma, Kensaku Shimada
  • Patent number: 10162199
    Abstract: An optical transmitter includes a reflective semiconductor optical amplifier (RSOA) coupled to an input end of a first optical waveguide. An end of the first optical waveguide provides a transmitter output for the optical transmitter. Moreover, a section of the first optical waveguide between the input end and the output end is optically coupled to a ring modulator that modulates an optical signal based on an electrical input signal. A passive ring filter (or a 1×N silicon-photonic switch and a bank of band reflectors) is connected to provide a mirror that reflects light received from the second optical waveguide back toward the RSOA to form a lasing cavity. Moreover, the ring modulator and the passive ring filter have different sizes, which causes a Vernier effect that provides a large wavelength tuning range for the lasing cavity in response to tuning the ring modulator and the passive ring filter.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: December 25, 2018
    Assignee: Oracle International Corporation
    Inventors: Xuezhe Zheng, Ying Luo, Jin Yao, Ashok V. Krishnamoorthy
  • Patent number: 10162135
    Abstract: The invention relates to an optical transmitter assembly (OTA) for vertical coupling of light into a chip, and to a method for manufacturing the OTA. The OTA includes a laser diode, a microlens and a turning mirror mounted at a top face of a supporting substrate within a sealed enclosure, and an optical component, such as an optical isolator, a polarizer, or a microlens disposed in a substrate cavity that opens to the back face of the substrate. The optical component may be placed into the cavity after the enclosure is sealed.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: December 25, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Claude Gamache, Nicolas Belanger, Scott Cameron
  • Patent number: 10156688
    Abstract: A passive alignment system is provided that comprises one or more first meltable elements disposed on a surface, one or more second meltable elements disposed on a surface and one or more first standoff devices. The first and second meltable elements transition from first and second pre-molten states, respectively, to first and second molten states, respectively, when subjected to first and second temperatures, respectively. In the first molten state, the first meltable elements control relative alignment between the surfaces in first and second dimensions. In the second molten state, the second meltable elements and the first standoff devices control relative alignment between the surfaces in a third dimension. The passive alignment system is suitable for use in a parallel optical communications module to precisely passively align ends of a plurality of optical fibers or waveguides with respective light sources or light detectors of the module.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: December 18, 2018
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Tak Kui Wang, Chung-Yi Su
  • Patent number: 10156682
    Abstract: A hybrid optical and electrical connection system includes a connectorized pigtail and a closure. The connectorized pigtail includes: a) a stub cable including a jacket containing at least one optical fiber and at least two electrical conductors, the stub cable having opposite first and second ends; and b) a hybrid optical and electrical connector that is factory terminated at the first end of the stub cable. The closure mounts at the second end of the stub cable for enclosing optical and electrical connections between the second end of the stub cable and a field cable.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: December 18, 2018
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Michael Lawrence Gurreri, Robert Charles Flaig, Dwight A. Bretz, Eric Ryan Chappell
  • Patent number: 10151877
    Abstract: An optical circuit module comprises a substrate with a first optical coupler connected to a first optical waveguide and a second optical coupler connected to a second optical waveguide on a substrate surface side; and a semiconductor photonic device mounted on the substrate, wherein the semiconductor photonic device has a third optical waveguide and a fourth optical waveguide extending to a first end face that faces the substrate surface, and wherein the third optical waveguide is optically connected to the first optical coupler and the fourth optical waveguide is optically connected to the second optical coupler.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: December 11, 2018
    Assignees: FUJITSU LIMITED, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventor: Akinori Hayakawa
  • Patent number: 10151885
    Abstract: An optical connector apparatus includes a connector which is connected to an electro-optical composite cable including an optical fiber and a metal conductor, and a connection object to be connected. The connector is provided with a ferrule which has a conductive portion on at least a part of the surface thereof. The connection object to be connected is provided with an electrically conductive connection member to be connected to the ferrule. The ferrule and the cable are connected by a crimping structure. When the ferrule is inserted in the connection member, the connector and the connection object to be connected are electrically and optically connected to each other.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: December 11, 2018
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Hideto Shimazu, Osamu Hashiguchi
  • Patent number: 10151940
    Abstract: Described herein are methods, systems, and apparatuses to utilize an electro-optic modulator including one or more heating elements. The modulator can utilize one or more heating elements to control an absorption or phase shift of the modulated optical signal. At least the active region of the modulator and the one or more heating elements of the modulator are included in a thermal isolation region comprising a low thermal conductivity to thermally isolate the active region and the one or more heating elements from a substrate of the PIC.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: December 11, 2018
    Assignee: Aurrion, Inc.
    Inventors: Robert Silvio Guzzon, Erik Norberg, Jonathan Edgar Roth
  • Patent number: 10151890
    Abstract: An exemplary embodiment of a device, configurable with various indicia of connectivity, and to be received by a data communication station is disclosed. The data communication station may include a frame having an aperture formed therein and a blank insert configured to be in registered alignment with the aperture. The blank insert may include a front facing surface configured to receive indicia thereon. The blank insert may include a retention feature configured to engage with an identification icon. In another embodiment, the data communication station may include a frame, a connector housing insert, and an identification icon configured to receive connectivity indicia thereon, wherein the connector housing insert may include a retention feature to engage with a corresponding retention feature on the identification icon. In another embodiment, a data communication station is configured to directly receive and retain an identification icon configured to receive connectivity indicia thereon.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: December 11, 2018
    Assignee: Leviton Manufacturing Co., Inc.
    Inventors: Dean Lipke, Jennifer Yanni, William Lauby, Charles Bragg