Patents Examined by Ryan S Cannon
-
Patent number: 11680204Abstract: The present disclosure relates to down-shifting nanophosphors, a method for preparing the same, and a luminescent solar concentrator (LSC) using the same. The down-shifting nanophosphors according to an embodiment of the present disclosure include a core including NaYF4 nanocrystals doped with neodymium (Nd) and ytterbium (Yb), and further include a neodymium (Nd)-doped crystalline shell surrounding the core, or further include a NaYF4 crystalline shell surrounding the crystalline shell. Therefore, the down-shifting nanophosphors efficiently absorb near infrared rays with a wavelength range of 700-900 nm and efficiently emit near infrared rays with a wavelength range of 950-1050 nm. In addition, the down-shifting nanophosphors according to an embodiment of the present disclosure has a size of 60 nm or less, and thus can be applied to manufacture transparent LSC films with ease and can realize transparent solar cell modules having high near infrared ray shifting efficiency.Type: GrantFiled: December 15, 2020Date of Patent: June 20, 2023Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGYInventors: Ho Seong Jang, Hyungduk Ko, Gumin Kang, So Hye Cho, Seung Yong Lee, A Ra Hong
-
Patent number: 11658610Abstract: The invention provides a photoelectric energy conversion device applied to a power conversion circuit to replace a magnetic component which is widely used in a power conversion circuit. The photoelectric energy conversion device includes a shell, at least one light generator, and at least one photovoltaic generator, wherein the at least one light generator and the at least one photovoltaic generator are packaged in the shell. The at least one photovoltaic generator receives light generated in the shell by the at least one light generator and generates electric energy based on the light, and the at least one photovoltaic generator serves as a power supply source for a back-end circuit of the photoelectric energy conversion device.Type: GrantFiled: October 20, 2021Date of Patent: May 23, 2023Assignee: SEA SONIC ELECTRONICS CO., LTD.Inventors: Hsiu-Cheng Chang, Sheng-Chien Chou
-
Patent number: 11658609Abstract: A photovoltaic renewable energy system utilizes a light source and one or more reflectors to produce power via photovoltaic cells. An exemplary photovoltaic renewable energy system utilizes a light source, such as Light Emitting Diodes (LED), to provide light to photovoltaic cells that therein produce electrical power. The photovoltaic cells may be arranged in a photovoltaic array to ensure maximum power conversion from the incident light. A reflector, such as a prism may be used to direct light from the light source onto the photovoltaic cells. A cell reflector, which may also be a prism, may be configured proximal to the photovoltaic cell surfaces to reflect light onto the photovoltaic surface to increase power conversion.Type: GrantFiled: October 16, 2020Date of Patent: May 23, 2023Inventor: Abron Arrington
-
Patent number: 11637231Abstract: Disclosed are an organic thermoelectric material and a thermoelectric generator including the same. More particularly, the thermoelectric generator includes an ionically conductive active layer containing a polyanion including an anionic group and a counter cation in a repeat unit thereof; a conductive polymer; and a polyvalent crosslinking agent as a single molecule including a plurality of acid functional groups. First and second electrodes are disposed to be connected to the ionically conductive active layer.Type: GrantFiled: October 16, 2020Date of Patent: April 25, 2023Assignees: KOOKMIN UNIVERSITY INDUSTRY ACADEMY COOPERATION FOUNDATION, UNIST (Ulsan National Institute of Science and Technology)Inventors: Ju-Won Jeon, Sung-Yeon Jang
-
Patent number: 11621663Abstract: A solar tracker system is a system and method to integrate the solar cells to a greenhouse. The solar tracker system comprises solar tracker modules that include solar cells, racks, gears, pinons, motors, and mounting brackets to efficiently and conveniently be installed to the roofs and walls of a new greenhouse and/or an existing greenhouse for retrofit application. Additionally, the solar tracker system uses various sensors to provide real-time conditions to the greenhouse. The method uses actual or system default values to adjust the angle and position of solar cells according to various environmental factors, such as DLI, weather, date, time, direction of sunlight, or type of plant.Type: GrantFiled: September 21, 2020Date of Patent: April 4, 2023Assignee: TSO GREENHOUSES, LLCInventor: David Fredrick Hinson
-
Patent number: 11600820Abstract: A positive electrode active material contains a lithium-rich lithium manganese-based oxide, wherein the lithium manganese-based oxide has a composition of the following chemical formula (1), and wherein a lithium ion conductive glass-ceramic solid electrolyte layer containing at least one selected from the group consisting of thio-LISICON(thio-lithium super ionic conductor), LISICON(lithium super ionic conductor), Li2S—SiS2—Li4SiO4, and Li2S—SiS2—P2S5—Lil is formed on the surface of the lithium manganese-based oxide particle: Li1?xMyMn1?x?yO2?zQz??(1) wherein, 0<x?0.2, 0<y?0.2, and 0?z?0.5; M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Ga, In, Ru, Zn, Zr, Nb, Sn, Mo, Sr, Sb, W, Ti and Bi; and Q is at least one element selected from the group consisting of P, N, F, S and Cl.Type: GrantFiled: September 7, 2018Date of Patent: March 7, 2023Inventors: Gi Beom Han, Jintae Hwang, Wang Mo Jung, Min Kyu You, Chi Ho Jo, Sungbin Park, Inseong Ju, Hyuck Hur, Younguk Park, Tae Gu Yoo
-
Patent number: 11575058Abstract: In a solar power generator, a plurality of first solar cell strings (51) are formed in a way that, in each first solar cell string (51), two or more first solar cells (41) are connected in series and disposed in descending order of potential, with an end narrower in width facing one end (E1) in a first direction (D1), from another end (E2) in the first direction (D1). A plurality of second solar cell strings (52) are formed in a way that, in each second solar cell string (52), two or more second solar cells (42) are connected in series and disposed in descending order of potential, with an end wider in width facing the one end (E1) in the first direction (D1), from the another end (E2) in the first direction (D1). Each of the plurality of first solar cell strings (51) and each of the plurality of second solar cell strings (52) are aligned alternately along the second direction (D2) that is orthogonal to the first direction (D1).Type: GrantFiled: June 30, 2017Date of Patent: February 7, 2023Assignee: Mitsubishi Electric CorporationInventor: Akira Inoue
-
Patent number: 11569778Abstract: A portable solar photovoltaic (PV) electricity generator module comprises a plurality of smart power slat (SPS) units, each SPS unit comprising a plurality of solar cells electrically connected together based on a specified cell interconnection design, and, N at least one power maximizing integrated circuit collecting electricity generated by the plurality of solar cells. The plurality of SPS units are mechanically connected such that the SPS units can be retracted for volume compaction of the module, and can be expanded for increasing PV electricity generation by the module. The module can be used as part of an electric power supply with a maximum power point tracking (MPPT) power optimizer, storage battery and leads to connect to a load. The load can be AC or DC.Type: GrantFiled: March 30, 2018Date of Patent: January 31, 2023Assignee: Sigmagen, Inc.Inventor: Mehrdad M. Moslehi
-
Patent number: 11569395Abstract: A solar power generator includes a support, a plurality of first electrodes disposed on one side of the support, a solar cell module mounted to the support, and a plurality of second electrodes disposed on the opposite side of the support. The solar cell module is electrically connected to a pair of the first electrodes via a transmission line for module connection. Three pairs of the second electrodes are electrically connected one-to-one to three pairs of the first electrodes via a transmission line for passage of current. Three of the second electrodes are electrically connected to one of the first electrode via the transmission line for passage of current.Type: GrantFiled: April 22, 2016Date of Patent: January 31, 2023Assignee: Mitsubishi Electric CorporationInventor: Kazuyoshi Seki
-
Patent number: 11557690Abstract: Semitransparent chalcogen solar cells and techniques for fabrication thereof are provided. In one aspect, a method of forming a solar cell includes: forming a first transparent contact on a substrate; depositing an n-type layer on the first transparent contact; depositing a p-type chalcogen absorber layer on the n-type layer, wherein a p-n junction is formed between the p-type chalcogen absorber layer and the n-type layer; depositing a protective interlayer onto the p-type chalcogen absorber layer, wherein the protective interlayer fully covers the p-type chalcogen absorber layer; and forming a second transparent contact on the interlayer, wherein the interlayer being disposed between the p-type chalcogen absorber layer and the second transparent contact serves to protect the p-n junction during the forming of the second transparent contact. Solar cells and other methods for formation thereof are also provided.Type: GrantFiled: April 13, 2020Date of Patent: January 17, 2023Assignee: International Business Machines CorporationInventors: Douglas M. Bishop, Yun Seog Lee, Saurabh Singh, Teodor K. Todorov
-
Patent number: 11545932Abstract: The invention relates to a hybrid solar panel comprising: a photovoltaic module; a heat exchanger arranged opposite in the rear surface of said photovoltaic module; a cooling fluid circulating in said exchanger; the heat exchanger including a heat exchange area; inner channels extending over the entire surface of the exchange area; the heat exchange area is made up of a double cellular plate with cells provided in the form of adjacent inner channels in fluid communication with the intake and discharge areas, characterised in that: the side ends are sealed; the plate comprises openings made in the lower wall in order to establish fluid communication between each channel and the intake and discharge areas, respectively; and the intake and discharge areas are provided in the form of collectors placed on the lower wall at the openings, so that said upper wall remains planar over the entire surface thereof.Type: GrantFiled: April 4, 2016Date of Patent: January 3, 2023Assignee: DUALSUNInventors: Laetitia Brottier, Jerome Mouterde
-
Patent number: 11539101Abstract: This nonaqueous electrolyte secondary battery is provided with an electrode body that is obtained by alternately laminating a plurality of positive electrodes and a plurality of negative electrodes, with separators being interposed therebetween. Each separator is configured of a porous resin substrate and a porous heat-resistant layer that is formed on one surface of the resin substrate and has a larger surface roughness than the resin substrate. The electrode body comprises: bonding particles that bond a negative electrode and a heat-resistant layer with each other; and bonding particles that bond a positive electrode and a resin substrate with each other. The mass of the bonding particles per unit area in a first interface between the negative electrode and the heat-resistant layer is larger than the mass of the bonding particles per unit area in a second interface between the positive electrode and the resin substrate.Type: GrantFiled: October 28, 2019Date of Patent: December 27, 2022Assignees: PANASONIC HOLDINGS CORPORATION, SANYO Electric Co., Ltd.Inventors: Hideo Kusada, Takafumi Tsukagoshi, Shinsuke Yoshida
-
Patent number: 11515439Abstract: A photovoltaic device includes: a semiconductor substrate stretching in a first direction and a second direction that intersects the first direction; and a first amorphous semiconductor film and a second amorphous semiconductor film both provided on the semiconductor substrate. The second amorphous semiconductor film has a differ conductivity type from the first amorphous semiconductor film. The first amorphous semiconductor film and the second amorphous semiconductor film are divided into a plurality of sections in the first direction and the second direction.Type: GrantFiled: December 11, 2020Date of Patent: November 29, 2022Assignee: SHARP KABUSHIKI KAISHAInventors: Teruaki Higo, Chikao Okamoto, Naoki Asano, Masamichi Kobayashi, Natsuko Fujiwara, Rihito Suganuma, Toshihiko Sakai, Kazuya Tsujino, Liumin Zou
-
Patent number: 11515552Abstract: A catalyst laminate includes a plurality of catalyst layers containing at least one of a noble metal and an oxide of the noble metal and at least one of a non-noble metal and an oxide of the non-noble metal, including: two or more first catalyst layers and two or more second catalyst layers. In an atomic percent of the noble metal obtained by using a line analysis by energy dispersive X-ray spectroscopy in a thickness direction of the catalyst laminate. The first catalyst layer is less than an average of a highest value and a lowest value of the atomic percent of the noble metal. The second catalyst layer has an atomic percent of the noble metal equal to or greater than the average of the highest value and the lowest value thereof. The second catalyst layer is present between the first catalyst layers.Type: GrantFiled: March 5, 2019Date of Patent: November 29, 2022Assignee: Kabushiki Kaisha ToshibaInventors: Atsuko Iida, Norihiro Yoshinaga, Wu Mei, Yoshihiko Nakano
-
Patent number: 11502235Abstract: A thermoelectric material includes a parent phase in which an MgSiSn alloy is a main component, a void formed in the parent phase, and a silicon layer that is formed on at least a wall surface of the void and that includes silicon as a main component. The thermoelectric material further includes MgO in an amount of 1.0 wt. % or more and 20.0 wt. % or less. The silicon layer includes amorphous Si, or amorphous Si and nanosized Si crystals, and the parent phase includes a region in which the composition ratio of the Si of the chemical composition of the MgSiSn alloy is higher than in the other regions and a region in which the composition ratio of the Sn of the chemical composition of the MgSiSn alloy is higher than in the other regions. With these configurations, the thermoelectric material realizes both lower thermal conductivity and lower electrical resistivity.Type: GrantFiled: August 10, 2018Date of Patent: November 15, 2022Assignees: HAKUSAN, INC., JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, ISHIKAWA PREFECTUREInventors: Shigeyuki Tsurumi, Kazumasa Yasuda, Takeshi Sotome, Mikio Koyano, Takeshi Toyoda, Akinari Matoba, Toshiharu Minamikawa
-
Patent number: 11495721Abstract: A system, a thermoelectric generator, and a method for generating electricity are provided. The system includes a thermoelectric generator, a cooling system, and a heating system. The cooling system includes a cold side module configured to hold a predetermined volume of air, a subterranean heat exchanger including an underground conduit, the underground conduit having a first end configured to receive ambient air and a second end coupled to the inlet of the cold side module, and an air exhaust coupled to the outlet of the cold side module and having one or more valves configured to control an airflow from the subterranean heat exchanger towards the air exhaust. The heating system includes a first solar concentrator to collect light rays, a hot side module, and a fiber optic cable to transport the collected light rays to the hot side module.Type: GrantFiled: April 28, 2022Date of Patent: November 8, 2022Assignee: Imam Abdulrahman Bin Faisal UniversityInventor: Mahbubunnabi Tamal
-
Patent number: 11489489Abstract: An apparatus for mounting a power electronic device to a photovoltaic (PV) module. In one embodiment, the apparatus comprises a mounting bracket that mechanically couples the power electronic device to the backsheet of the PV module such that positioning of the power electronic device can be dynamically interchanged between a retracted position in which the power electronic device is pressed flat to the backsheet, and an extended position in which the power electronic device is coupled to the backsheet with an air gap between the power electronic device and the backsheet.Type: GrantFiled: March 15, 2021Date of Patent: November 1, 2022Assignee: Enphase Energy, Inc.Inventor: Ryan Linderman
-
Patent number: 11482728Abstract: A non-aqueous electrolyte solution for a lithium secondary battery, and a lithium second battery including the same are disclosed herein. In some embodiments, the lithium electrolyte includes lithium bis(fluorosulfonyl)imide as a first lithium salt, a second lithium salt, an organic solvent, and a compound represented by Formula 1. In some embodiments, the lithium second battery includes a positive electrode having a positive electrode active material represented by Formula 2.Type: GrantFiled: November 23, 2018Date of Patent: October 25, 2022Inventors: Hyun Yeong Lee, Chul Haeng Lee, Sung Hoon Yu, Hyun Seung Kim
-
Patent number: 11482966Abstract: The present disclosure provides device for generating electric energy. The device comprises a panel for receiving incident light. The panel is at least partially transmissive for visible light and has first and second surfaces and having a peripheral region comprising at least one edge and/or corner. The panel is arranged such that a portion of light incident on the panel is redirected within the panel towards the peripheral region of the panel. The device further comprises a flexible photovoltaic element that has first and second portions separated by a bend. The bend is located adjacent the edge or corner of the panel whereby the first and second portions of the flexible photovoltaic element are disposed with different orientations within the device.Type: GrantFiled: November 27, 2018Date of Patent: October 25, 2022Assignee: Clearvue Technologies LtdInventor: Jamie Lyford
-
Patent number: 11476504Abstract: Provided is an all-solid-state battery which is configured to suppress an increase in the resistance of the all-solid-state battery and which is configured to suppress the peeling-off of the solid electrolyte layer. Disclosed is an all-solid-state battery comprising: a cathode comprising a cathode layer, an anode comprising an anode layer, and a solid electrolyte layer disposed between the cathode layer and the anode layer, wherein a width of the cathode layer is smaller than a width of the anode layer and a width of the solid electrolyte layer; wherein the solid electrolyte layer comprises a non-facing portion where the solid electrolyte layer does not face the cathode layer and a facing portion where the solid electrolyte layer faces the cathode layer; and wherein a binder content of the non-facing portion is larger than a binder content of the facing portion.Type: GrantFiled: February 4, 2020Date of Patent: October 18, 2022Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Motoshi Isono, Takashi Takemoto, Kazuo Yaso